Papers
Topics
Authors
Recent
2000 character limit reached

Higher order topological defects in a moiré lattice (2404.06176v1)

Published 9 Apr 2024 in cond-mat.mes-hall and cond-mat.mtrl-sci

Abstract: Topological defects are ubiquitous, they manifest in a wide variety of systems such as liquid crystals, magnets or superconductors. The recent quest for nonabelian anyons in condensed matter physics stimulates the interest for topological defects since they can be hosted in vortices in quantum magnets or topological superconductors. In addition to these vortex defects, in this study we propose to investigate edge dislocations in 2D magnets as new building blocks for topological physics since they can be described as vortices in the structural phase field. Here we demonstrate the existence of higher order topological dislocations within the higher order moir\'e pattern of the van der Waals 2D magnet CrCl3 deposited on Au(111). Surprizingly, these higher order dislocations arise from ordinary simple edge dislocations in the atomic lattice of CrCl3. We provide a theoretical framework explaining the higher order dislocations as vortex with a winding Chern number of 2. We expect that these original defects could stabilize some anyons either in a 2D quantum magnet or within a 2D superconductor coupled to it.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. Novoselov, K.S., Mishchenko, A., Carvalho, A., Castro Neto, A.H.: 2D materials and van der Waals heterostructures. Science 353(6298), 9439 (2016) https://doi.org/10.1126/science.aac9439 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Wang et al. [2022] Wang, Q.H., Bedoya-Pinto, A., Blei, M., Dismukes, A.H., Hamo, A., Jenkins, S., Koperski, M., Liu, Y., Sun, Q.-C., Telford, E.J., Kim, H.H., Augustin, M., Vool, U., Yin, J.-X., Li, L.H., Falin, A., Dean, C.R., Casanova, F., Evans, R.F.L., Chshiev, M., Mishchenko, A., Petrovic, C., He, R., Zhao, L., Tsen, A.W., Gerardot, B.D., Brotons-Gisbert, M., Guguchia, Z., Roy, X., Tongay, S., Wang, Z., Hasan, M.Z., Wrachtrup, J., Yacoby, A., Fert, A., Parkin, S., Novoselov, K.S., Dai, P., Balicas, L., Santos, E.J.G.: The Magnetic Genome of Two-Dimensional van der Waals Materials. ACS Nano 16(5), 6960–7079 (2022) https://doi.org/10.1021/acsnano.1c09150 . Publisher: American Chemical Society. Accessed 2024-01-14 Han et al. [2014] Han, W., Kawakami, R.K., Gmitra, M., Fabian, J.: Graphene spintronics. Nature Nanotechnology 9(10), 794–807 (2014) https://doi.org/10.1038/nnano.2014.214 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Kezilebieke et al. [2020] Kezilebieke, S., Huda, M.N., Vaňo, V., Aapro, M., Ganguli, S.C., Silveira, O.J., Głodzik, S., Foster, A.S., Ojanen, T., Liljeroth, P.: Topological superconductivity in a van der Waals heterostructure. Nature 588(7838), 424–428 (2020) https://doi.org/10.1038/s41586-020-2989-y . Number: 7838 Publisher: Nature Publishing Group. Accessed 2024-01-14 Kezilebieke et al. [2022] Kezilebieke, S., Vaňo, V., Huda, M.N., Aapro, M., Ganguli, S.C., Liljeroth, P., Lado, J.L.: Moiré-Enabled Topological Superconductivity. Nano Letters 22(1), 328–333 (2022) https://doi.org/10.1021/acs.nanolett.1c03856 . Publisher: American Chemical Society. Accessed 2024-01-14 Martinez-Castro et al. [2023] Martinez-Castro, J., Wichmann, T., Jin, K., Samuely, T., Lyu, Z., Yan, J., Onufriienko, O., Szabó, P., Tautz, F.S., Ternes, M., Lüpke, F.: One-dimensional topological superconductivity in a van der Waals heterostructure. arXiv. arXiv:2304.08142 [cond-mat] (2023). http://arxiv.org/abs/2304.08142 Accessed 2024-01-14 Basov et al. [2016] Basov, D.N., Fogler, M.M., Abajo, F.J.: Polaritons in van der Waals materials. Science 354(6309), 1992 (2016) https://doi.org/10.1126/science.aag1992 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Zhang et al. [2021] Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wang, Q.H., Bedoya-Pinto, A., Blei, M., Dismukes, A.H., Hamo, A., Jenkins, S., Koperski, M., Liu, Y., Sun, Q.-C., Telford, E.J., Kim, H.H., Augustin, M., Vool, U., Yin, J.-X., Li, L.H., Falin, A., Dean, C.R., Casanova, F., Evans, R.F.L., Chshiev, M., Mishchenko, A., Petrovic, C., He, R., Zhao, L., Tsen, A.W., Gerardot, B.D., Brotons-Gisbert, M., Guguchia, Z., Roy, X., Tongay, S., Wang, Z., Hasan, M.Z., Wrachtrup, J., Yacoby, A., Fert, A., Parkin, S., Novoselov, K.S., Dai, P., Balicas, L., Santos, E.J.G.: The Magnetic Genome of Two-Dimensional van der Waals Materials. ACS Nano 16(5), 6960–7079 (2022) https://doi.org/10.1021/acsnano.1c09150 . Publisher: American Chemical Society. Accessed 2024-01-14 Han et al. [2014] Han, W., Kawakami, R.K., Gmitra, M., Fabian, J.: Graphene spintronics. Nature Nanotechnology 9(10), 794–807 (2014) https://doi.org/10.1038/nnano.2014.214 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Kezilebieke et al. [2020] Kezilebieke, S., Huda, M.N., Vaňo, V., Aapro, M., Ganguli, S.C., Silveira, O.J., Głodzik, S., Foster, A.S., Ojanen, T., Liljeroth, P.: Topological superconductivity in a van der Waals heterostructure. Nature 588(7838), 424–428 (2020) https://doi.org/10.1038/s41586-020-2989-y . Number: 7838 Publisher: Nature Publishing Group. Accessed 2024-01-14 Kezilebieke et al. [2022] Kezilebieke, S., Vaňo, V., Huda, M.N., Aapro, M., Ganguli, S.C., Liljeroth, P., Lado, J.L.: Moiré-Enabled Topological Superconductivity. Nano Letters 22(1), 328–333 (2022) https://doi.org/10.1021/acs.nanolett.1c03856 . Publisher: American Chemical Society. Accessed 2024-01-14 Martinez-Castro et al. [2023] Martinez-Castro, J., Wichmann, T., Jin, K., Samuely, T., Lyu, Z., Yan, J., Onufriienko, O., Szabó, P., Tautz, F.S., Ternes, M., Lüpke, F.: One-dimensional topological superconductivity in a van der Waals heterostructure. arXiv. arXiv:2304.08142 [cond-mat] (2023). http://arxiv.org/abs/2304.08142 Accessed 2024-01-14 Basov et al. [2016] Basov, D.N., Fogler, M.M., Abajo, F.J.: Polaritons in van der Waals materials. Science 354(6309), 1992 (2016) https://doi.org/10.1126/science.aag1992 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Zhang et al. [2021] Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Han, W., Kawakami, R.K., Gmitra, M., Fabian, J.: Graphene spintronics. Nature Nanotechnology 9(10), 794–807 (2014) https://doi.org/10.1038/nnano.2014.214 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Kezilebieke et al. [2020] Kezilebieke, S., Huda, M.N., Vaňo, V., Aapro, M., Ganguli, S.C., Silveira, O.J., Głodzik, S., Foster, A.S., Ojanen, T., Liljeroth, P.: Topological superconductivity in a van der Waals heterostructure. Nature 588(7838), 424–428 (2020) https://doi.org/10.1038/s41586-020-2989-y . Number: 7838 Publisher: Nature Publishing Group. Accessed 2024-01-14 Kezilebieke et al. [2022] Kezilebieke, S., Vaňo, V., Huda, M.N., Aapro, M., Ganguli, S.C., Liljeroth, P., Lado, J.L.: Moiré-Enabled Topological Superconductivity. Nano Letters 22(1), 328–333 (2022) https://doi.org/10.1021/acs.nanolett.1c03856 . Publisher: American Chemical Society. Accessed 2024-01-14 Martinez-Castro et al. [2023] Martinez-Castro, J., Wichmann, T., Jin, K., Samuely, T., Lyu, Z., Yan, J., Onufriienko, O., Szabó, P., Tautz, F.S., Ternes, M., Lüpke, F.: One-dimensional topological superconductivity in a van der Waals heterostructure. arXiv. arXiv:2304.08142 [cond-mat] (2023). http://arxiv.org/abs/2304.08142 Accessed 2024-01-14 Basov et al. [2016] Basov, D.N., Fogler, M.M., Abajo, F.J.: Polaritons in van der Waals materials. Science 354(6309), 1992 (2016) https://doi.org/10.1126/science.aag1992 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Zhang et al. [2021] Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Kezilebieke, S., Huda, M.N., Vaňo, V., Aapro, M., Ganguli, S.C., Silveira, O.J., Głodzik, S., Foster, A.S., Ojanen, T., Liljeroth, P.: Topological superconductivity in a van der Waals heterostructure. Nature 588(7838), 424–428 (2020) https://doi.org/10.1038/s41586-020-2989-y . Number: 7838 Publisher: Nature Publishing Group. Accessed 2024-01-14 Kezilebieke et al. [2022] Kezilebieke, S., Vaňo, V., Huda, M.N., Aapro, M., Ganguli, S.C., Liljeroth, P., Lado, J.L.: Moiré-Enabled Topological Superconductivity. Nano Letters 22(1), 328–333 (2022) https://doi.org/10.1021/acs.nanolett.1c03856 . Publisher: American Chemical Society. Accessed 2024-01-14 Martinez-Castro et al. [2023] Martinez-Castro, J., Wichmann, T., Jin, K., Samuely, T., Lyu, Z., Yan, J., Onufriienko, O., Szabó, P., Tautz, F.S., Ternes, M., Lüpke, F.: One-dimensional topological superconductivity in a van der Waals heterostructure. arXiv. arXiv:2304.08142 [cond-mat] (2023). http://arxiv.org/abs/2304.08142 Accessed 2024-01-14 Basov et al. [2016] Basov, D.N., Fogler, M.M., Abajo, F.J.: Polaritons in van der Waals materials. Science 354(6309), 1992 (2016) https://doi.org/10.1126/science.aag1992 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Zhang et al. [2021] Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Kezilebieke, S., Vaňo, V., Huda, M.N., Aapro, M., Ganguli, S.C., Liljeroth, P., Lado, J.L.: Moiré-Enabled Topological Superconductivity. Nano Letters 22(1), 328–333 (2022) https://doi.org/10.1021/acs.nanolett.1c03856 . Publisher: American Chemical Society. Accessed 2024-01-14 Martinez-Castro et al. [2023] Martinez-Castro, J., Wichmann, T., Jin, K., Samuely, T., Lyu, Z., Yan, J., Onufriienko, O., Szabó, P., Tautz, F.S., Ternes, M., Lüpke, F.: One-dimensional topological superconductivity in a van der Waals heterostructure. arXiv. arXiv:2304.08142 [cond-mat] (2023). http://arxiv.org/abs/2304.08142 Accessed 2024-01-14 Basov et al. [2016] Basov, D.N., Fogler, M.M., Abajo, F.J.: Polaritons in van der Waals materials. Science 354(6309), 1992 (2016) https://doi.org/10.1126/science.aag1992 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Zhang et al. [2021] Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Martinez-Castro, J., Wichmann, T., Jin, K., Samuely, T., Lyu, Z., Yan, J., Onufriienko, O., Szabó, P., Tautz, F.S., Ternes, M., Lüpke, F.: One-dimensional topological superconductivity in a van der Waals heterostructure. arXiv. arXiv:2304.08142 [cond-mat] (2023). http://arxiv.org/abs/2304.08142 Accessed 2024-01-14 Basov et al. [2016] Basov, D.N., Fogler, M.M., Abajo, F.J.: Polaritons in van der Waals materials. Science 354(6309), 1992 (2016) https://doi.org/10.1126/science.aag1992 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Zhang et al. [2021] Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Basov, D.N., Fogler, M.M., Abajo, F.J.: Polaritons in van der Waals materials. Science 354(6309), 1992 (2016) https://doi.org/10.1126/science.aag1992 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Zhang et al. [2021] Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  2. Wang, Q.H., Bedoya-Pinto, A., Blei, M., Dismukes, A.H., Hamo, A., Jenkins, S., Koperski, M., Liu, Y., Sun, Q.-C., Telford, E.J., Kim, H.H., Augustin, M., Vool, U., Yin, J.-X., Li, L.H., Falin, A., Dean, C.R., Casanova, F., Evans, R.F.L., Chshiev, M., Mishchenko, A., Petrovic, C., He, R., Zhao, L., Tsen, A.W., Gerardot, B.D., Brotons-Gisbert, M., Guguchia, Z., Roy, X., Tongay, S., Wang, Z., Hasan, M.Z., Wrachtrup, J., Yacoby, A., Fert, A., Parkin, S., Novoselov, K.S., Dai, P., Balicas, L., Santos, E.J.G.: The Magnetic Genome of Two-Dimensional van der Waals Materials. ACS Nano 16(5), 6960–7079 (2022) https://doi.org/10.1021/acsnano.1c09150 . Publisher: American Chemical Society. Accessed 2024-01-14 Han et al. [2014] Han, W., Kawakami, R.K., Gmitra, M., Fabian, J.: Graphene spintronics. Nature Nanotechnology 9(10), 794–807 (2014) https://doi.org/10.1038/nnano.2014.214 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Kezilebieke et al. [2020] Kezilebieke, S., Huda, M.N., Vaňo, V., Aapro, M., Ganguli, S.C., Silveira, O.J., Głodzik, S., Foster, A.S., Ojanen, T., Liljeroth, P.: Topological superconductivity in a van der Waals heterostructure. Nature 588(7838), 424–428 (2020) https://doi.org/10.1038/s41586-020-2989-y . Number: 7838 Publisher: Nature Publishing Group. Accessed 2024-01-14 Kezilebieke et al. [2022] Kezilebieke, S., Vaňo, V., Huda, M.N., Aapro, M., Ganguli, S.C., Liljeroth, P., Lado, J.L.: Moiré-Enabled Topological Superconductivity. Nano Letters 22(1), 328–333 (2022) https://doi.org/10.1021/acs.nanolett.1c03856 . Publisher: American Chemical Society. Accessed 2024-01-14 Martinez-Castro et al. [2023] Martinez-Castro, J., Wichmann, T., Jin, K., Samuely, T., Lyu, Z., Yan, J., Onufriienko, O., Szabó, P., Tautz, F.S., Ternes, M., Lüpke, F.: One-dimensional topological superconductivity in a van der Waals heterostructure. arXiv. arXiv:2304.08142 [cond-mat] (2023). http://arxiv.org/abs/2304.08142 Accessed 2024-01-14 Basov et al. [2016] Basov, D.N., Fogler, M.M., Abajo, F.J.: Polaritons in van der Waals materials. Science 354(6309), 1992 (2016) https://doi.org/10.1126/science.aag1992 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Zhang et al. [2021] Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Han, W., Kawakami, R.K., Gmitra, M., Fabian, J.: Graphene spintronics. Nature Nanotechnology 9(10), 794–807 (2014) https://doi.org/10.1038/nnano.2014.214 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Kezilebieke et al. [2020] Kezilebieke, S., Huda, M.N., Vaňo, V., Aapro, M., Ganguli, S.C., Silveira, O.J., Głodzik, S., Foster, A.S., Ojanen, T., Liljeroth, P.: Topological superconductivity in a van der Waals heterostructure. Nature 588(7838), 424–428 (2020) https://doi.org/10.1038/s41586-020-2989-y . Number: 7838 Publisher: Nature Publishing Group. Accessed 2024-01-14 Kezilebieke et al. [2022] Kezilebieke, S., Vaňo, V., Huda, M.N., Aapro, M., Ganguli, S.C., Liljeroth, P., Lado, J.L.: Moiré-Enabled Topological Superconductivity. Nano Letters 22(1), 328–333 (2022) https://doi.org/10.1021/acs.nanolett.1c03856 . Publisher: American Chemical Society. Accessed 2024-01-14 Martinez-Castro et al. [2023] Martinez-Castro, J., Wichmann, T., Jin, K., Samuely, T., Lyu, Z., Yan, J., Onufriienko, O., Szabó, P., Tautz, F.S., Ternes, M., Lüpke, F.: One-dimensional topological superconductivity in a van der Waals heterostructure. arXiv. arXiv:2304.08142 [cond-mat] (2023). http://arxiv.org/abs/2304.08142 Accessed 2024-01-14 Basov et al. [2016] Basov, D.N., Fogler, M.M., Abajo, F.J.: Polaritons in van der Waals materials. Science 354(6309), 1992 (2016) https://doi.org/10.1126/science.aag1992 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Zhang et al. [2021] Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Kezilebieke, S., Huda, M.N., Vaňo, V., Aapro, M., Ganguli, S.C., Silveira, O.J., Głodzik, S., Foster, A.S., Ojanen, T., Liljeroth, P.: Topological superconductivity in a van der Waals heterostructure. Nature 588(7838), 424–428 (2020) https://doi.org/10.1038/s41586-020-2989-y . Number: 7838 Publisher: Nature Publishing Group. Accessed 2024-01-14 Kezilebieke et al. [2022] Kezilebieke, S., Vaňo, V., Huda, M.N., Aapro, M., Ganguli, S.C., Liljeroth, P., Lado, J.L.: Moiré-Enabled Topological Superconductivity. Nano Letters 22(1), 328–333 (2022) https://doi.org/10.1021/acs.nanolett.1c03856 . Publisher: American Chemical Society. Accessed 2024-01-14 Martinez-Castro et al. [2023] Martinez-Castro, J., Wichmann, T., Jin, K., Samuely, T., Lyu, Z., Yan, J., Onufriienko, O., Szabó, P., Tautz, F.S., Ternes, M., Lüpke, F.: One-dimensional topological superconductivity in a van der Waals heterostructure. arXiv. arXiv:2304.08142 [cond-mat] (2023). http://arxiv.org/abs/2304.08142 Accessed 2024-01-14 Basov et al. [2016] Basov, D.N., Fogler, M.M., Abajo, F.J.: Polaritons in van der Waals materials. Science 354(6309), 1992 (2016) https://doi.org/10.1126/science.aag1992 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Zhang et al. [2021] Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Kezilebieke, S., Vaňo, V., Huda, M.N., Aapro, M., Ganguli, S.C., Liljeroth, P., Lado, J.L.: Moiré-Enabled Topological Superconductivity. Nano Letters 22(1), 328–333 (2022) https://doi.org/10.1021/acs.nanolett.1c03856 . Publisher: American Chemical Society. Accessed 2024-01-14 Martinez-Castro et al. [2023] Martinez-Castro, J., Wichmann, T., Jin, K., Samuely, T., Lyu, Z., Yan, J., Onufriienko, O., Szabó, P., Tautz, F.S., Ternes, M., Lüpke, F.: One-dimensional topological superconductivity in a van der Waals heterostructure. arXiv. arXiv:2304.08142 [cond-mat] (2023). http://arxiv.org/abs/2304.08142 Accessed 2024-01-14 Basov et al. [2016] Basov, D.N., Fogler, M.M., Abajo, F.J.: Polaritons in van der Waals materials. Science 354(6309), 1992 (2016) https://doi.org/10.1126/science.aag1992 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Zhang et al. [2021] Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Martinez-Castro, J., Wichmann, T., Jin, K., Samuely, T., Lyu, Z., Yan, J., Onufriienko, O., Szabó, P., Tautz, F.S., Ternes, M., Lüpke, F.: One-dimensional topological superconductivity in a van der Waals heterostructure. arXiv. arXiv:2304.08142 [cond-mat] (2023). http://arxiv.org/abs/2304.08142 Accessed 2024-01-14 Basov et al. [2016] Basov, D.N., Fogler, M.M., Abajo, F.J.: Polaritons in van der Waals materials. Science 354(6309), 1992 (2016) https://doi.org/10.1126/science.aag1992 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Zhang et al. [2021] Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Basov, D.N., Fogler, M.M., Abajo, F.J.: Polaritons in van der Waals materials. Science 354(6309), 1992 (2016) https://doi.org/10.1126/science.aag1992 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Zhang et al. [2021] Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  3. Han, W., Kawakami, R.K., Gmitra, M., Fabian, J.: Graphene spintronics. Nature Nanotechnology 9(10), 794–807 (2014) https://doi.org/10.1038/nnano.2014.214 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Kezilebieke et al. [2020] Kezilebieke, S., Huda, M.N., Vaňo, V., Aapro, M., Ganguli, S.C., Silveira, O.J., Głodzik, S., Foster, A.S., Ojanen, T., Liljeroth, P.: Topological superconductivity in a van der Waals heterostructure. Nature 588(7838), 424–428 (2020) https://doi.org/10.1038/s41586-020-2989-y . Number: 7838 Publisher: Nature Publishing Group. Accessed 2024-01-14 Kezilebieke et al. [2022] Kezilebieke, S., Vaňo, V., Huda, M.N., Aapro, M., Ganguli, S.C., Liljeroth, P., Lado, J.L.: Moiré-Enabled Topological Superconductivity. Nano Letters 22(1), 328–333 (2022) https://doi.org/10.1021/acs.nanolett.1c03856 . Publisher: American Chemical Society. Accessed 2024-01-14 Martinez-Castro et al. [2023] Martinez-Castro, J., Wichmann, T., Jin, K., Samuely, T., Lyu, Z., Yan, J., Onufriienko, O., Szabó, P., Tautz, F.S., Ternes, M., Lüpke, F.: One-dimensional topological superconductivity in a van der Waals heterostructure. arXiv. arXiv:2304.08142 [cond-mat] (2023). http://arxiv.org/abs/2304.08142 Accessed 2024-01-14 Basov et al. [2016] Basov, D.N., Fogler, M.M., Abajo, F.J.: Polaritons in van der Waals materials. Science 354(6309), 1992 (2016) https://doi.org/10.1126/science.aag1992 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Zhang et al. [2021] Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Kezilebieke, S., Huda, M.N., Vaňo, V., Aapro, M., Ganguli, S.C., Silveira, O.J., Głodzik, S., Foster, A.S., Ojanen, T., Liljeroth, P.: Topological superconductivity in a van der Waals heterostructure. Nature 588(7838), 424–428 (2020) https://doi.org/10.1038/s41586-020-2989-y . Number: 7838 Publisher: Nature Publishing Group. Accessed 2024-01-14 Kezilebieke et al. [2022] Kezilebieke, S., Vaňo, V., Huda, M.N., Aapro, M., Ganguli, S.C., Liljeroth, P., Lado, J.L.: Moiré-Enabled Topological Superconductivity. Nano Letters 22(1), 328–333 (2022) https://doi.org/10.1021/acs.nanolett.1c03856 . Publisher: American Chemical Society. Accessed 2024-01-14 Martinez-Castro et al. [2023] Martinez-Castro, J., Wichmann, T., Jin, K., Samuely, T., Lyu, Z., Yan, J., Onufriienko, O., Szabó, P., Tautz, F.S., Ternes, M., Lüpke, F.: One-dimensional topological superconductivity in a van der Waals heterostructure. arXiv. arXiv:2304.08142 [cond-mat] (2023). http://arxiv.org/abs/2304.08142 Accessed 2024-01-14 Basov et al. [2016] Basov, D.N., Fogler, M.M., Abajo, F.J.: Polaritons in van der Waals materials. Science 354(6309), 1992 (2016) https://doi.org/10.1126/science.aag1992 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Zhang et al. [2021] Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Kezilebieke, S., Vaňo, V., Huda, M.N., Aapro, M., Ganguli, S.C., Liljeroth, P., Lado, J.L.: Moiré-Enabled Topological Superconductivity. Nano Letters 22(1), 328–333 (2022) https://doi.org/10.1021/acs.nanolett.1c03856 . Publisher: American Chemical Society. Accessed 2024-01-14 Martinez-Castro et al. [2023] Martinez-Castro, J., Wichmann, T., Jin, K., Samuely, T., Lyu, Z., Yan, J., Onufriienko, O., Szabó, P., Tautz, F.S., Ternes, M., Lüpke, F.: One-dimensional topological superconductivity in a van der Waals heterostructure. arXiv. arXiv:2304.08142 [cond-mat] (2023). http://arxiv.org/abs/2304.08142 Accessed 2024-01-14 Basov et al. [2016] Basov, D.N., Fogler, M.M., Abajo, F.J.: Polaritons in van der Waals materials. Science 354(6309), 1992 (2016) https://doi.org/10.1126/science.aag1992 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Zhang et al. [2021] Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Martinez-Castro, J., Wichmann, T., Jin, K., Samuely, T., Lyu, Z., Yan, J., Onufriienko, O., Szabó, P., Tautz, F.S., Ternes, M., Lüpke, F.: One-dimensional topological superconductivity in a van der Waals heterostructure. arXiv. arXiv:2304.08142 [cond-mat] (2023). http://arxiv.org/abs/2304.08142 Accessed 2024-01-14 Basov et al. [2016] Basov, D.N., Fogler, M.M., Abajo, F.J.: Polaritons in van der Waals materials. Science 354(6309), 1992 (2016) https://doi.org/10.1126/science.aag1992 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Zhang et al. [2021] Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Basov, D.N., Fogler, M.M., Abajo, F.J.: Polaritons in van der Waals materials. Science 354(6309), 1992 (2016) https://doi.org/10.1126/science.aag1992 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Zhang et al. [2021] Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  4. Kezilebieke, S., Huda, M.N., Vaňo, V., Aapro, M., Ganguli, S.C., Silveira, O.J., Głodzik, S., Foster, A.S., Ojanen, T., Liljeroth, P.: Topological superconductivity in a van der Waals heterostructure. Nature 588(7838), 424–428 (2020) https://doi.org/10.1038/s41586-020-2989-y . Number: 7838 Publisher: Nature Publishing Group. Accessed 2024-01-14 Kezilebieke et al. [2022] Kezilebieke, S., Vaňo, V., Huda, M.N., Aapro, M., Ganguli, S.C., Liljeroth, P., Lado, J.L.: Moiré-Enabled Topological Superconductivity. Nano Letters 22(1), 328–333 (2022) https://doi.org/10.1021/acs.nanolett.1c03856 . Publisher: American Chemical Society. Accessed 2024-01-14 Martinez-Castro et al. [2023] Martinez-Castro, J., Wichmann, T., Jin, K., Samuely, T., Lyu, Z., Yan, J., Onufriienko, O., Szabó, P., Tautz, F.S., Ternes, M., Lüpke, F.: One-dimensional topological superconductivity in a van der Waals heterostructure. arXiv. arXiv:2304.08142 [cond-mat] (2023). http://arxiv.org/abs/2304.08142 Accessed 2024-01-14 Basov et al. [2016] Basov, D.N., Fogler, M.M., Abajo, F.J.: Polaritons in van der Waals materials. Science 354(6309), 1992 (2016) https://doi.org/10.1126/science.aag1992 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Zhang et al. [2021] Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Kezilebieke, S., Vaňo, V., Huda, M.N., Aapro, M., Ganguli, S.C., Liljeroth, P., Lado, J.L.: Moiré-Enabled Topological Superconductivity. Nano Letters 22(1), 328–333 (2022) https://doi.org/10.1021/acs.nanolett.1c03856 . Publisher: American Chemical Society. Accessed 2024-01-14 Martinez-Castro et al. [2023] Martinez-Castro, J., Wichmann, T., Jin, K., Samuely, T., Lyu, Z., Yan, J., Onufriienko, O., Szabó, P., Tautz, F.S., Ternes, M., Lüpke, F.: One-dimensional topological superconductivity in a van der Waals heterostructure. arXiv. arXiv:2304.08142 [cond-mat] (2023). http://arxiv.org/abs/2304.08142 Accessed 2024-01-14 Basov et al. [2016] Basov, D.N., Fogler, M.M., Abajo, F.J.: Polaritons in van der Waals materials. Science 354(6309), 1992 (2016) https://doi.org/10.1126/science.aag1992 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Zhang et al. [2021] Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Martinez-Castro, J., Wichmann, T., Jin, K., Samuely, T., Lyu, Z., Yan, J., Onufriienko, O., Szabó, P., Tautz, F.S., Ternes, M., Lüpke, F.: One-dimensional topological superconductivity in a van der Waals heterostructure. arXiv. arXiv:2304.08142 [cond-mat] (2023). http://arxiv.org/abs/2304.08142 Accessed 2024-01-14 Basov et al. [2016] Basov, D.N., Fogler, M.M., Abajo, F.J.: Polaritons in van der Waals materials. Science 354(6309), 1992 (2016) https://doi.org/10.1126/science.aag1992 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Zhang et al. [2021] Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Basov, D.N., Fogler, M.M., Abajo, F.J.: Polaritons in van der Waals materials. Science 354(6309), 1992 (2016) https://doi.org/10.1126/science.aag1992 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Zhang et al. [2021] Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  5. Kezilebieke, S., Vaňo, V., Huda, M.N., Aapro, M., Ganguli, S.C., Liljeroth, P., Lado, J.L.: Moiré-Enabled Topological Superconductivity. Nano Letters 22(1), 328–333 (2022) https://doi.org/10.1021/acs.nanolett.1c03856 . Publisher: American Chemical Society. Accessed 2024-01-14 Martinez-Castro et al. [2023] Martinez-Castro, J., Wichmann, T., Jin, K., Samuely, T., Lyu, Z., Yan, J., Onufriienko, O., Szabó, P., Tautz, F.S., Ternes, M., Lüpke, F.: One-dimensional topological superconductivity in a van der Waals heterostructure. arXiv. arXiv:2304.08142 [cond-mat] (2023). http://arxiv.org/abs/2304.08142 Accessed 2024-01-14 Basov et al. [2016] Basov, D.N., Fogler, M.M., Abajo, F.J.: Polaritons in van der Waals materials. Science 354(6309), 1992 (2016) https://doi.org/10.1126/science.aag1992 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Zhang et al. [2021] Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Martinez-Castro, J., Wichmann, T., Jin, K., Samuely, T., Lyu, Z., Yan, J., Onufriienko, O., Szabó, P., Tautz, F.S., Ternes, M., Lüpke, F.: One-dimensional topological superconductivity in a van der Waals heterostructure. arXiv. arXiv:2304.08142 [cond-mat] (2023). http://arxiv.org/abs/2304.08142 Accessed 2024-01-14 Basov et al. [2016] Basov, D.N., Fogler, M.M., Abajo, F.J.: Polaritons in van der Waals materials. Science 354(6309), 1992 (2016) https://doi.org/10.1126/science.aag1992 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Zhang et al. [2021] Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Basov, D.N., Fogler, M.M., Abajo, F.J.: Polaritons in van der Waals materials. Science 354(6309), 1992 (2016) https://doi.org/10.1126/science.aag1992 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Zhang et al. [2021] Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  6. Martinez-Castro, J., Wichmann, T., Jin, K., Samuely, T., Lyu, Z., Yan, J., Onufriienko, O., Szabó, P., Tautz, F.S., Ternes, M., Lüpke, F.: One-dimensional topological superconductivity in a van der Waals heterostructure. arXiv. arXiv:2304.08142 [cond-mat] (2023). http://arxiv.org/abs/2304.08142 Accessed 2024-01-14 Basov et al. [2016] Basov, D.N., Fogler, M.M., Abajo, F.J.: Polaritons in van der Waals materials. Science 354(6309), 1992 (2016) https://doi.org/10.1126/science.aag1992 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Zhang et al. [2021] Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Basov, D.N., Fogler, M.M., Abajo, F.J.: Polaritons in van der Waals materials. Science 354(6309), 1992 (2016) https://doi.org/10.1126/science.aag1992 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Zhang et al. [2021] Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  7. Basov, D.N., Fogler, M.M., Abajo, F.J.: Polaritons in van der Waals materials. Science 354(6309), 1992 (2016) https://doi.org/10.1126/science.aag1992 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Zhang et al. [2021] Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  8. Zhang, Q., Hu, G., Ma, W., Li, P., Krasnok, A., Hillenbrand, R., Alù, A., Qiu, C.-W.: Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021) https://doi.org/10.1038/s41586-021-03581-5 Huang et al. [2017] Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  9. Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017) https://doi.org/10.1038/nature22391 . Number: 7657 Publisher: Nature Publishing Group. Accessed 2024-01-14 Chen et al. [2019] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  10. Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, C.: Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019) https://doi.org/10.1126/science.aav1937 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kim et al. [2019] Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  11. Kim, M., Kumaravadivel, P., Birkbeck, J., Kuang, W., Xu, S.G., Hopkinson, D.G., Knolle, J., McClarty, P.A., Berdyugin, A.I., Ben Shalom, M., Gorbachev, R.V., Haigh, S.J., Liu, S., Edgar, J.H., Novoselov, K.S., Grigorieva, I.V., Geim, A.K.: Micromagnetometry of two-dimensional ferromagnets. Nature Electronics 2(10), 457–463 (2019) https://doi.org/10.1038/s41928-019-0302-6 . Number: 10 Publisher: Nature Publishing Group. Accessed 2024-01-14 Soriano et al. [2020] Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  12. Soriano, D., Katsnelson, M.I., Fernández-Rossier, J.: Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Letters 20(9), 6225–6234 (2020) https://doi.org/10.1021/acs.nanolett.0c02381 . Publisher: American Chemical Society. Accessed 2024-01-14 Bedoya-Pinto et al. [2021] Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  13. Bedoya-Pinto, A., Ji, J.-R., Pandeya, A.K., Gargiani, P., Valvidares, M., Sessi, P., Taylor, J.M., Radu, F., Chang, K., Parkin, S.S.P.: Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374(6567), 616–620 (2021) https://doi.org/10.1126/science.abd5146 . Publisher: American Association for the Advancement of Science. Accessed 2024-01-14 Kitaev [2006] Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  14. Kitaev, A.: Anyons in an exactly solved model and beyond. Annals of Physics 321(1), 2–111 (2006) https://doi.org/10.1016/j.aop.2005.10.005 . Accessed 2024-02-27 Ganguli et al. [2023] Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  15. Ganguli, S.C., Aapro, M., Kezilebieke, S., Amini, M., Lado, J.L., Liljeroth, P.: Visualization of Moiré Magnons in Monolayer Ferromagnet. Nano Letters 23(8), 3412–3417 (2023) https://doi.org/10.1021/acs.nanolett.3c00417 . Publisher: American Chemical Society. Accessed 2024-01-14 Li et al. [2020] Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  16. Li, P., Wang, C., Zhang, J., Chen, S., Guo, D., Ji, W., Zhong, D.: Single-layer CrI3 grown by molecular beam epitaxy. Science Bulletin 65(13), 1064–1071 (2020) https://doi.org/10.1016/j.scib.2020.03.031 . Accessed 2024-01-14 Xie et al. [2023] Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  17. Xie, H., Luo, X., Ye, Z., Sun, Z., Ye, G., Sung, S.H., Ge, H., Yan, S., Fu, Y., Tian, S., Lei, H., Sun, K., Hovden, R., He, R., Zhao, L.: Evidence of non-collinear spin texture in magnetic moiré superlattices. Nature Physics 19(8), 1150–1155 (2023) https://doi.org/10.1038/s41567-023-02061-z . Number: 8 Publisher: Nature Publishing Group. Accessed 2024-01-14 Qiu et al. [2021] Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  18. Qiu, Z., Holwill, M., Olsen, T., Lyu, P., Li, J., Fang, H., Yang, H., Kashchenko, M., Novoselov, K.S., Lu, J.: Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 12(1), 70 (2021) https://doi.org/10.1038/s41467-020-20376-w . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Cheng et al. [2023] Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  19. Cheng, G., Rahman, M.M., Allcca, A.L., Rustagi, A., Liu, X., Liu, L., Fu, L., Zhu, Y., Mao, Z., Watanabe, K., Taniguchi, T., Upadhyaya, P., Chen, Y.P.: Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nature Electronics 6(6), 434–442 (2023) https://doi.org/10.1038/s41928-023-00978-0 . Number: 6 Publisher: Nature Publishing Group. Accessed 2024-01-14 Zeller and Günther [2014] Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  20. Zeller, P., Günther, S.: What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New Journal of Physics 16(8), 083028 (2014) https://doi.org/10.1088/1367-2630/16/8/083028 . Publisher: IOP Publishing. Accessed 2024-01-14 Loginova et al. [2009] Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  21. Loginova, E., Nie, S., Thürmer, K., Bartelt, N.C., McCarty, K.F.: Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 80(8), 085430 (2009) https://doi.org/10.1103/PhysRevB.80.085430 . Publisher: American Physical Society. Accessed 2024-01-14 Zeller et al. [2012] Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  22. Zeller, P., Dänhardt, S., Gsell, S., Schreck, M., Wintterlin, J.: Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science 606(19), 1475–1480 (2012) https://doi.org/10.1016/j.susc.2012.05.014 . Accessed 2024-01-14 Blanc et al. [2012] Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  23. Blanc, N., Coraux, J., Vo-Van, C., N’Diaye, A.T., Geaymond, O., Renaud, G.: Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 86(23), 235439 (2012) https://doi.org/10.1103/PhysRevB.86.235439 . Accessed 2024-01-14 N’Diaye et al. [2008] N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  24. N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New Journal of Physics 10(4), 043033 (2008) https://doi.org/10.1088/1367-2630/10/4/043033 . Accessed 2024-01-14 Merino et al. [2011] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  25. Merino, P., Švec, M., Pinardi, A.L., Otero, G., Martín-Gago, J.A.: Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano 5(7), 5627–5634 (2011) https://doi.org/10.1021/nn201200j . Publisher: American Chemical Society. Accessed 2024-01-14 Artaud et al. [2016] Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  26. Artaud, A., Magaud, L., Le Quang, T., Guisset, V., David, P., Chapelier, C., Coraux, J.: Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports 6(1), 25670 (2016) https://doi.org/10.1038/srep25670 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-21 Tsubokawa [1960] Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  27. Tsubokawa, I.: On the Magnetic Properties of a CrBr3 Single Crystal. Journal of the Physical Society of Japan 15(9), 1664–1668 (1960) https://doi.org/10.1143/JPSJ.15.1664 . Publisher: The Physical Society of Japan. Accessed 2024-01-14 Starr et al. [1940] Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  28. Starr, C., Bitter, F., Kaufmann, A.R.: The Magnetic Properties of the Iron Group Anhydrous Chlorides at Low Temperatures. I. Experimental. Physical Review 58(11), 977–983 (1940) https://doi.org/10.1103/PhysRev.58.977 . Publisher: American Physical Society. Accessed 2024-01-14 Akram et al. [2021] Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  29. Akram, M., LaBollita, H., Dey, D., Kapeghian, J., Erten, O., Botana, A.S.: Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. Nano Letters 21(15), 6633–6639 (2021) https://doi.org/10.1021/acs.nanolett.1c02096 . Publisher: American Chemical Society. Accessed 2024-01-14 Ghader et al. [2022] Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  30. Ghader, D., Jabakhanji, B., Stroppa, A.: Whirling interlayer fields as a source of stable topological order in moiré CrI3. Communications Physics 5(1), 1–12 (2022) https://doi.org/10.1038/s42005-022-00972-6 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Fumega and Lado [2023] Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  31. Fumega, A.O., Lado, J.L.: Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers. 2D Materials 10(2), 025026 (2023) https://doi.org/10.1088/2053-1583/acc671 . Publisher: IOP Publishing. Accessed 2024-01-14 Nakosai et al. [2013] Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  32. Nakosai, S., Tanaka, Y., Nagaosa, N.: Two-dimensional $p$-wave superconducting states with magnetic moments on a conventional $s$-wave superconductor. Physical Review B 88(18), 180503 (2013) https://doi.org/10.1103/PhysRevB.88.180503 . Publisher: American Physical Society. Accessed 2024-01-14 Chen and Schnyder [2015] Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  33. Chen, W., Schnyder, A.P.: Majorana edge states in superconductor-noncollinear magnet interfaces. Physical Review B 92(21), 214502 (2015) https://doi.org/10.1103/PhysRevB.92.214502 . Publisher: American Physical Society. Accessed 2024-01-14 Yang et al. [2016] Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  34. Yang, G., Stano, P., Klinovaja, J., Loss, D.: Majorana bound states in magnetic skyrmions. Physical Review B 93(22), 224505 (2016) https://doi.org/10.1103/PhysRevB.93.224505 . Publisher: American Physical Society. Accessed 2024-01-14 Mohanta et al. [2019] Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  35. Mohanta, N., Zhou, T., Xu, J.-W., Han, J.E., Kent, A.D., Shabani, J., Žutić, I., Matos-Abiague, A.: Electrical Control of Majorana Bound States Using Magnetic Stripes. Physical Review Applied 12(3), 034048 (2019) https://doi.org/10.1103/PhysRevApplied.12.034048 . Publisher: American Physical Society. Accessed 2024-01-14 Garnier et al. [2019] Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  36. Garnier, M., Mesaros, A., Simon, P.: Topological superconductivity with deformable magnetic skyrmions. Communications Physics 2(1), 1–8 (2019) https://doi.org/10.1038/s42005-019-0226-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Ménard et al. [2019] Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  37. Ménard, G.C., Mesaros, A., Brun, C., Debontridder, F., Roditchev, D., Simon, P., Cren, T.: Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nature Communications 10(1), 2587 (2019) https://doi.org/10.1038/s41467-019-10397-5 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-02-02 Nye and Berry [1974] Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  38. Nye, J.F., Berry, M.V.: Dislocations in Wave Trains. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 336(1605), 165–190 (1974). Publisher: The Royal Society. Accessed 2024-01-14 Dutreix et al. [2019] Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  39. Dutreix, C., González-Herrero, H., Brihuega, I., Katsnelson, M.I., Chapelier, C., Renard, V.T.: Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574(7777), 219–222 (2019) https://doi.org/10.1038/s41586-019-1613-5 . Number: 7777 Publisher: Nature Publishing Group. Accessed 2024-02-21 Coraux et al. [2008] Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  40. Coraux, J., N‘Diaye, A.T., Busse, C., Michely, T.: Structural Coherency of Graphene on Ir(111). Nano Letters 8(2), 565–570 (2008) https://doi.org/10.1021/nl0728874 . Publisher: American Chemical Society. Accessed 2024-02-21 Lu et al. [2014] Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  41. Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters 14(9), 5133–5139 (2014) https://doi.org/10.1021/nl501900x . Publisher: American Chemical Society. Accessed 2024-01-14 Pochet et al. [2017] Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  42. Pochet, P., McGuigan, B.C., Coraux, J., Johnson, H.T.: Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today 9, 240–250 (2017) https://doi.org/10.1016/j.apmt.2017.07.007 . Accessed 2024-01-14 de Jong et al. [2022] Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  43. Jong, T.A., Benschop, T., Chen, X., Krasovskii, E.E., Dood, M.J.A., Tromp, R.M., Allan, M.P., Molen, S.J.: Imaging moiré deformation and dynamics in twisted bilayer graphene. Nature Communications 13(1), 70 (2022) https://doi.org/10.1038/s41467-021-27646-1 . Number: 1 Publisher: Nature Publishing Group. Accessed 2024-01-14 Bardeen [1961] Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  44. Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961) https://doi.org/10.1103/PhysRevLett.6.57 Tersoff and Hamann [1985] Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  45. Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985) https://doi.org/10.1103/PhysRevB.31.805 Wortmann et al. [2001] Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  46. Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001) https://doi.org/10.1103/PhysRevLett.86.4132 Zhang et al. [2022] Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  47. Zhang, F., Li, X., Wu, Y., Wang, X., Zhao, J., Gao, W.: Strong dzyaloshinskii-moriya interaction in monolayer cri3subscriptcri3{\mathrm{cri}}_{3}roman_cri start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT on metal substrates. Phys. Rev. B 106, 100407 (2022) https://doi.org/10.1103/PhysRevB.106.L100407 Yang et al. [2022] Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  48. Yang, H., Zhang, T., Liu, M., Liu, L., Wu, X., Wang, Y.: Moiré Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials 4(2), 891–896 (2022) https://doi.org/10.1021/acsaelm.2c00013 . Publisher: American Chemical Society. Accessed 2024-02-03 Ster et al. [2019] Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  49. Ster, M.L., Märkl, T., Brown, S.A.: Moiré patterns: a simple analytical model. 2D Materials 7(1), 011005 (2019) https://doi.org/10.1088/2053-1583/ab5470 . Publisher: IOP Publishing. Accessed 2024-02-02 [51] www.flapw.de. www.flapw.de www.flapw.de. www.flapw.de
  50. www.flapw.de. www.flapw.de

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.