Machine-learning-inspired quantum control in many-body dynamics (2404.05940v1)
Abstract: Achieving precise preparation of quantum many-body states is crucial for the practical implementation of quantum computation and quantum simulation. However, the inherent challenges posed by unavoidable excitations at critical points during quench processes necessitate careful design of control fields. In this work, we introduce a promising and versatile dynamic control neural network tailored to optimize control fields. We address the problem of suppressing defect density and enhancing cat-state fidelity during the passage across the critical point in the quantum Ising model. Our method facilitates seamless transitions between different objective functions by adjusting the {optimization strategy}. In comparison to gradient-based power-law quench methods, our approach demonstrates significant advantages for both small system sizes and long-term evolutions. We provide a detailed analysis of the specific forms of control fields and summarize common features for experimental implementation. Furthermore, numerical simulations demonstrate the robustness of our proposal against random noise and spin number fluctuations. The optimized defect density and cat-state fidelity exhibit a transition at a critical ratio of the quench duration to the system size, coinciding with the quantum speed limit for quantum evolution.
- F. Verstraete, J. J. García-Ripoll, and J. I. Cirac, Phys. Rev. Lett. 93, 207204 (2004).
- N. Shettell and D. Markham, Phys. Rev. Lett. 124, 110502 (2020).
- I. Frérot and T. Roscilde, Phys. Rev. Lett. 121, 020402 (2018).
- A. Altherr and Y. Yang, Phys. Rev. Lett. 127, 060501 (2021).
- G. Tóth and I. Apellaniz, Journal of Physics A: Mathematical and Theoretical 47, 424006 (2014).
- S. S. Szigeti, O. Hosten, and S. A. Haine, Applied Physics Letters 118, 140501 (2021).
- V. Giovannetti, S. Lloyd, and L. Maccone, Science 306, 1330 (2004).
- V. Giovannetti, S. Lloyd, and L. Maccone, Nature Photonics 5, 222 (2011).
- P. Giorda and M. G. A. Paris, Phys. Rev. Lett. 105, 020503 (2010).
- H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901 (2001).
- Y. Chu and J. Cai, Phys. Rev. Lett. 128, 200501 (2022).
- A. Rahmani and C. Chamon, Phys. Rev. Lett. 107, 016402 (2011).
- F. Reiter, D. Reeb, and A. S. Sørensen, Phys. Rev. Lett. 117, 040501 (2016).
- Z.-Y. Wei, D. Malz, and J. I. Cirac, Phys. Rev. Res. 5, L022037 (2023).
- N. S. Maslova, P. I. Arseyev, and V. N. Mantsevich, Scientific Reports 9, 3130 (2019).
- T. Kato, Journal of the Physical Society of Japan 5, 435 (1950).
- W. Xiang-Bin and M. Keiji, Phys. Rev. Lett. 87, 097901 (2001).
- J. Dziarmaga, Advances in Physics 59, 1063 (2010).
- R. Barankov and A. Polkovnikov, Phys. Rev. Lett. 101, 076801 (2008).
- J. Dziarmaga, Phys. Rev. Lett. 95, 245701 (2005).
- R. Jozsa, Journal of Modern Optics 41, 2315 (1994).
- M. A. Nielsen and I. Chuang, Quantum computation and quantum information (Cambridge University Press, 2010).
- A. del Campo, M. M. Rams, and W. H. Zurek, Phys. Rev. Lett. 109, 115703 (2012).
- J. D. Sau and K. Sengupta, Phys. Rev. B 90, 104306 (2014).
- B. Damski, Journal of Statistical Mechanics: Theory and Experiment 2014, P12019 (2014).
- S. Deffner, C. Jarzynski, and A. del Campo, Phys. Rev. X 4, 021013 (2014).
- P. Doria, T. Calarco, and S. Montangero, Phys. Rev. Lett. 106, 190501 (2011).
- G. C. Hegerfeldt, Phys. Rev. Lett. 111, 260501 (2013).
- V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. A 67, 052109 (2003).
- L. B. Levitin and T. Toffoli, Phys. Rev. Lett. 103, 160502 (2009).
- S. Deffner and S. Campbell, Journal of Physics A: Mathematical and Theoretical 50, 453001 (2017).
- M. Bukov, D. Sels, and A. Polkovnikov, Phys. Rev. X 9, 011034 (2019).
- M. Zhang, H.-M. Yu, and J. Liu, npj Quantum Information 9, 97 (2023).
- G. Carleo and M. Troyer, Science 355, 602 (2017).
- K. Choo, A. Mezzacapo, and G. Carleo, Nature Communications 11, 2368 (2020).
- G. Carleo, Y. Nomura, and M. Imada, Nature Communications 9, 5322 (2018).
- N. Wu, A. Nanduri, and H. Rabitz, Phys. Rev. B 91, 041115 (2015).
- P. Frey and S. Rachel, Science Advances 8, eabm7652 (2022).
- B. F. Schiffer, J. Tura, and J. I. Cirac, PRX Quantum 3, 020347 (2022).
- B. Kraus, Phys. Rev. Lett. 107, 250503 (2011).
- S. Mostame and R. Schützhold, Phys. Rev. Lett. 101, 220501 (2008).
- A. Cervera-Lierta, Quantum 2, 114 (2018).
- S. Sachdev, Physics World 12, 33 (1999).
- A. Kitaev, Annals of Physics 303, 2 (2003).
- N. Wu, Physics Letters A 376, 3530 (2012).
- C. Brif, R. Chakrabarti, and H. Rabitz, New Journal of Physics 12, 075008 (2010).
- R. Chakrabarti, R. Wu, and H. Rabitz, Phys. Rev. A 78, 033414 (2008).
- I. Giagkiozis and P. Fleming, Information Sciences 293, 338 (2015).
- M. Białończyk and B. Damski, Journal of Statistical Mechanics: Theory and Experiment 2020, 013108 (2020).
- N. Wu, Phys. Rev. E 101, 042108 (2020).
- G. G. Cabrera and R. Jullien, Phys. Rev. B 35, 7062 (1987).
- J. Roland and N. J. Cerf, Phys. Rev. A 65, 042308 (2002).
- X. Li, Scientific Reports 13, 14734 (2023).
- A. Vepsäläinen, S. Danilin, and G. S. Paraoanu, Science Advances 5, eaau5999 (2019).
- E. Schrödinger, Naturwissenschaften 23, 807 (1935).
- D. J. Wineland, Rev. Mod. Phys. 85, 1103 (2013).
- W. H. Zurek, Nature 412, 712 (2001).
- J. P. Dowling, Contemporary Physics 49, 125 (2008).
- V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 96, 010401 (2006).
- C. Lee, Phys. Rev. Lett. 97, 150402 (2006).
- L. Pezzé and A. Smerzi, Phys. Rev. Lett. 102, 100401 (2009).
- F. Cesa and H. Pichler, Phys. Rev. Lett. 131, 170601 (2023).
- R. Salvia, M. Mehboudi, and M. Perarnau-Llobet, Phys. Rev. Lett. 130, 240803 (2023).
- S. Zhou, S. Michalakis, and T. Gefen, PRX Quantum 4, 040305 (2023).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.