Hybrid Tree Tensor Networks for quantum simulation (2404.05784v2)
Abstract: Hybrid Tensor Networks (hTN) offer a promising solution for encoding variational quantum states beyond the capabilities of efficient classical methods or noisy quantum computers alone. However, their practical usefulness and many operational aspects of hTN-based algorithms, like the optimization of hTNs, the generalization of standard contraction rules to an hybrid setting, and the design of application-oriented architectures have not been thoroughly investigated yet. In this work, we introduce a novel algorithm to perform ground state optimizations with hybrid Tree Tensor Networks (hTTNs), discussing its advantages and roadblocks, and identifying a set of promising applications. We benchmark our approach on two paradigmatic models, namely the Ising model at the critical point and the Toric code Hamiltonian. In both cases, we successfully demonstrate that hTTNs can improve upon classical equivalents with equal bond dimension in the classical part.
- H. Bruus and K. Flensburg, Many-body quantum theory in condensed matter physics, Oxford Graduate Texts (Oxford University Press, London, England, 2004).
- G. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2005).
- M. Dalmonte and S. Montangero, Contemp. Phys. 57, 388 (2016).
- M. C. Banuls and K. Cichy, Reports on Progress in Physics 83, 024401 (2020).
- S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
- S. Rommer and S. Östlund, Phys. Rev. B 55, 2164 (1997).
- F. Verstraete and J. I. Cirac, arXiv preprint cond-mat/0407066 (2004).
- Y.-Y. Shi, L.-M. Duan, and G. Vidal, Phys. Rev. A 74, 022320 (2006).
- I. P. McCulloch, J. Stat. Mech.: Theory Exp. 2007 (10), P10014.
- G. Vidal, Phys. Rev. Lett. 101, 110501 (2008).
- G. Evenbly and G. Vidal, Phys. Rev. Lett. 112, 240502 (2014).
- A. Baiardi and M. Reiher, J. Chem. Phys. 152, 040903 (2020).
- G. Carleo and M. Troyer, Science 355, 602 (2017).
- D. Ceperley and B. Alder, Science 231, 555 (1986).
- A. W. Sandvik and J. Kurkijärvi, Phys. Rev. B 43, 5950 (1991).
- M. Troyer and U.-J. Wiese, Phys. Rev. Lett. 94, 170201 (2005).
- G. H. Booth, A. J. W. Thom, and A. Alavi, J. Chem. Phys. 131, 10.1063/1.3193710 (2009).
- M. B. Hastings, J. Stat. Mech.: Theory Exp. 2007 (08), P08024.
- J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys. 82, 277 (2010).
- R. Orús, Nat. Rev. Phys. 1, 538 (2019).
- M. M. Rams and M. Zwolak, Phys. Rev. Lett. 124, 137701 (2020).
- L. Slattery and B. K. Clark, arXiv preprint arXiv:2108.02792 (2021).
- J. Y. Araz and M. Spannowsky, Phys. Rev. A 106, 062423 (2022).
- A. Callison and N. Chancellor, Phys. Rev. A 106, 010101 (2022).
- E. C. Martín, K. Plekhanov, and M. Lubasch, Quantum 7, 974 (2023).
- S. R. White, Phys. Rev. B 48, 10345 (1993).
- U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
- M. Rizzi, S. Montangero, and G. Vidal, Phys. Rev. A 77, 052328 (2008).
- L. Cincio, J. Dziarmaga, and M. M. Rams, Phys. Rev. Lett. 100, 240603 (2008).
- L. Tagliacozzo, G. Evenbly, and G. Vidal, Phys. Rev. B 80, 235127 (2009).
- R. Orús, Ann. Phys. 349, 117 (2014).
- U. Schollwöck, Ann. Phys. 326, 96 (2011), January 2011 Special Issue.
- S. Montangero, Introduction to Tensor Network Methods: Numerical simulations of low-dimensional many-body quantum systems (Springer International Publishing, 2018).
- F. Verstraete and J. I. Cirac, Phys. Rev. B 73, 094423 (2006).
- M. B. Hastings, Phys. Rev. B 76, 035114 (2007b).
- P. Czarnik and J. Dziarmaga, Phys. Rev. B 92, 035152 (2015).
- M. Lubasch, J. I. Cirac, and M.-C. Bañuls, Phys. Rev. B 90, 064425 (2014).
- T. Felser, S. Notarnicola, and S. Montangero, Phys. Rev. Lett. 126, 170603 (2021).
- X. Qian and M. Qin, Phys. Rev. B 105, 205102 (2022).
- G. Ferrari, G. Magnifico, and S. Montangero, Phys. Rev. B 105, 214201 (2022).
- P. Huembeli, G. Carleo, and A. Mezzacapo, arXiv preprint arXiv:2205.00933 (2022).
- S.-J. Ran, Phys. Rev. A 101, 032310 (2020).
- G. Vidal and C. M. Dawson, Phys. Rev. A 69, 010301 (2004).
- F. Vatan and C. Williams, Phys. Rev. A 69, 032315 (2004).
- A. Kitaev, Ann. Phys. 303, 2 (2003).
- M. Hermanns, arXiv preprint arXiv:1702.01525 (2017).
- L. Slattery, B. Villalonga, and B. K. Clark, Phys. Rev. Res. 4, 023072 (2022).
- M. S. Kaznady and D. F. James, Phys. Rev. A 79, 022109 (2009).
- S. Aaronson, in Proceedings of the 50th annual ACM SIGACT symposium on theory of computing (2018) pp. 325–338.
- A. A. Akhtar, H.-Y. Hu, and Y.-Z. You, Quantum 7, 1026 (2023).
- A. Acharya, S. Saha, and A. M. Sengupta, Phys. Rev. A 104, 052418 (2021).
- D. Bauernfeind and M. Aichhorn, SciPost Phys. 8, 024 (2020).
- Y. Li and S. C. Benjamin, Phys. Rev. X 7, 021050 (2017).
- H.-Y. Huang, R. Kueng, and J. Preskill, Nat. Phys. 16, 1050 (2020).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.