A de Sitter S-matrix from amputated cosmological correlators
Abstract: Extending scattering to states with unphysical mass values (particles off their mass shell'') has been instrumental in developing modern amplitude technology for Minkowski spacetime. Here, we study the off-shell correlators which underpin the recently proposed S-matrix for scattering on de Sitter spacetime. By labelling each particle with both a spatial momentum and an independentenergy'' variable (the de Sitter analogue of a 4-momentum), we find that the practical computation of these correlators is greatly simplified. This allows us to derive compact expressions for all 3- and 4-particle S-matrices at tree-level for scalar fields coupled through any derivative interactions. As on Minkowski, we find that the 3-particle and exchange part of the 4-particle S-matrices are unique (up to crossing). The remaining contact part of the 4-particle S-matrix is an analytic function of just two differential operators, which become the usual Mandelstam variables in the Minkowski limit. Finally, we introduce a spectral decomposition for the tree-level exchange of a heavy field responsible for a cosmological collider signal. Once projected onto physical mass eigenstates, these S-matrix elements encode the statistical properties of the early inflationary perturbations.
- G. F. Chew, S𝑆Sitalic_S-matrix theory of strong interactions. Benjamin, New York, 1961.
- Cambridge Univ. Press, Cambridge, 1966.
- Springer Berlin Heidelberg, 1969.
- R. E. Cutkosky, “Singularities and discontinuities of Feynman amplitudes,” J. Math. Phys. 1 (1960) 429–433.
- Z. Bern, L. J. Dixon, D. C. Dunbar, and D. A. Kosower, “One loop n point gauge theory amplitudes, unitarity and collinear limits,” Nucl. Phys. B 425 (1994) 217–260, arXiv:hep-ph/9403226.
- Z. Bern, L. J. Dixon, D. C. Dunbar, and D. A. Kosower, “Fusing gauge theory tree amplitudes into loop amplitudes,” Nucl. Phys. B 435 (1995) 59–101, arXiv:hep-ph/9409265.
- H. Elvang and Y.-t. Huang, “Scattering Amplitudes,” arXiv:1308.1697 [hep-th].
- Z. Bern and J. Trnka, “Snowmass TF04 Report: Scattering Amplitudes and their Applications,” arXiv:2210.03146 [hep-th].
- A. Buonanno, M. Khalil, D. O’Connell, R. Roiban, M. P. Solon, and M. Zeng, “Snowmass White Paper: Gravitational Waves and Scattering Amplitudes,” in Snowmass 2021. 4, 2022. arXiv:2204.05194 [hep-th].
- A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis, and R. Rattazzi, “Causality, analyticity and an IR obstruction to UV completion,” JHEP 10 (2006) 014, arXiv:hep-th/0602178.
- A. V. Manohar and V. Mateu, “Dispersion Relation Bounds for pi pi Scattering,” Phys. Rev. D 77 (2008) 094019, arXiv:0801.3222 [hep-ph].
- Z. Komargodski and A. Schwimmer, “On Renormalization Group Flows in Four Dimensions,” JHEP 12 (2011) 099, arXiv:1107.3987 [hep-th].
- M. A. Luty, J. Polchinski, and R. Rattazzi, “The a𝑎aitalic_a-theorem and the Asymptotics of 4D Quantum Field Theory,” JHEP 01 (2013) 152, arXiv:1204.5221 [hep-th].
- M. Kruczenski, J. Penedones, and B. C. van Rees, “Snowmass White Paper: S-matrix Bootstrap,” arXiv:2203.02421 [hep-th].
- C. de Rham, S. Kundu, M. Reece, A. J. Tolley, and S.-Y. Zhou, “Snowmass White Paper: UV Constraints on IR Physics,” in Snowmass 2021. 3, 2022. arXiv:2203.06805 [hep-th].
- X. Chen and Y. Wang, “Quasi-Single Field Inflation and Non-Gaussianities,” JCAP 04 (2010) 027, arXiv:0911.3380 [hep-th].
- N. Arkani-Hamed and J. Maldacena, “Cosmological Collider Physics,” arXiv:1503.08043 [hep-th].
- G. Cabass, O. H. E. Philcox, M. M. Ivanov, K. Akitsu, S.-F. Chen, M. Simonović, and M. Zaldarriaga, “BOSS Constraints on Massive Particles during Inflation: The Cosmological Collider in Action,” arXiv:2404.01894 [astro-ph.CO].
- D. Baumann, D. Green, A. Joyce, E. Pajer, G. L. Pimentel, C. Sleight, and M. Taronna, “Snowmass White Paper: The Cosmological Bootstrap,” in Snowmass 2021. 3, 2022. arXiv:2203.08121 [hep-th].
- P. Benincasa, “Amplitudes meet Cosmology: A (Scalar) Primer,” arXiv:2203.15330 [hep-th].
- J. Bonifacio, E. Pajer, and D.-G. Wang, “From amplitudes to contact cosmological correlators,” JHEP 10 (2021) 001, arXiv:2106.15468 [hep-th].
- M. H. G. Lee, “From amplitudes to analytic wavefunctions,” JHEP 03 (2024) 058, arXiv:2310.01525 [hep-th].
- C. Chowdhury, A. Lipstein, J. Mei, I. Sachs, and P. Vanhove, “The Subtle Simplicity of Cosmological Correlators,” arXiv:2312.13803 [hep-th].
- H. Goodhew, S. Jazayeri, and E. Pajer, “The Cosmological Optical Theorem,” JCAP 04 (2021) 021, arXiv:2009.02898 [hep-th].
- S. Céspedes, A.-C. Davis, and S. Melville, “On the time evolution of cosmological correlators,” JHEP 02 (2021) 012, arXiv:2009.07874 [hep-th].
- S. Melville and E. Pajer, “Cosmological Cutting Rules,” JHEP 05 (2021) 249, arXiv:2103.09832 [hep-th].
- H. Goodhew, S. Jazayeri, M. H. Gordon Lee, and E. Pajer, “Cutting cosmological correlators,” JCAP 08 (2021) 003, arXiv:2104.06587 [hep-th].
- D. Baumann, W.-M. Chen, C. Duaso Pueyo, A. Joyce, H. Lee, and G. L. Pimentel, “Linking the singularities of cosmological correlators,” JHEP 09 (2022) 010, arXiv:2106.05294 [hep-th].
- S. Jazayeri, E. Pajer, and D. Stefanyszyn, “From locality and unitarity to cosmological correlators,” JHEP 10 (2021) 065, arXiv:2103.08649 [hep-th].
- S. Albayrak, P. Benincasa, and C. D. Pueyo, “Perturbative Unitarity and the Wavefunction of the Universe,” arXiv:2305.19686 [hep-th].
- S. Agui-Salcedo and S. Melville, “The cosmological tree theorem,” JHEP 12 (2023) 076, arXiv:2308.00680 [hep-th].
- S. A. Salcedo, M. H. G. Lee, S. Melville, and E. Pajer, “The Analytic Wavefunction,” JHEP 06 (2023) 020, arXiv:2212.08009 [hep-th].
- C. Armstrong, H. Goodhew, A. Lipstein, and J. Mei, “Graviton trispectrum from gluons,” JHEP 08 (2023) 206, arXiv:2304.07206 [hep-th].
- H. Lee and X. Wang, “Cosmological double-copy relations,” Phys. Rev. D 108 (2023) no. 6, L061702, arXiv:2212.11282 [hep-th].
- S. Melville and G. L. Pimentel, “A de Sitter S𝑆Sitalic_S-matrix for the masses,” arXiv:2309.07092 [hep-th].
- N. Arkani-Hamed, D. Baumann, H. Lee, and G. L. Pimentel, “The Cosmological Bootstrap: Inflationary Correlators from Symmetries and Singularities,” JHEP 04 (2020) 105, arXiv:1811.00024 [hep-th].
- D. Baumann, C. Duaso Pueyo, A. Joyce, H. Lee, and G. L. Pimentel, “The cosmological bootstrap: weight-shifting operators and scalar seeds,” JHEP 12 (2020) 204, arXiv:1910.14051 [hep-th].
- D. Baumann, C. Duaso Pueyo, A. Joyce, H. Lee, and G. L. Pimentel, “The Cosmological Bootstrap: Spinning Correlators from Symmetries and Factorization,” SciPost Phys. 11 (2021) 071, arXiv:2005.04234 [hep-th].
- A. Bzowski, P. McFadden, and K. Skenderis, “Implications of conformal invariance in momentum space,” JHEP 03 (2014) 111, arXiv:1304.7760 [hep-th].
- A. Bzowski, P. McFadden, and K. Skenderis, “Scalar 3-point functions in CFT: renormalisation, beta functions and anomalies,” JHEP 03 (2016) 066, arXiv:1510.08442 [hep-th].
- D. Baumann, Cosmology. Cambridge University Press, 7, 2022.
- H. Gomez, R. L. Jusinskas, and A. Lipstein, “Cosmological Scattering Equations,” Phys. Rev. Lett. 127 (2021) no. 25, 251604, arXiv:2106.11903 [hep-th].
- H. Gomez, R. Lipinski Jusinskas, and A. Lipstein, “Cosmological scattering equations at tree-level and one-loop,” JHEP 07 (2022) 004, arXiv:2112.12695 [hep-th].
- C. Armstrong, H. Gomez, R. Lipinski Jusinskas, A. Lipstein, and J. Mei, “Effective field theories and cosmological scattering equations,” JHEP 08 (2022) 054, arXiv:2204.08931 [hep-th].
- F. A. Berends and W. T. Giele, “Recursive Calculations for Processes with n Gluons,” Nucl. Phys. B 306 (1988) 759–808.
- D. S. Jones, “The kontorovich-lebedev transform,” IMA Journal of Applied Mathematics 26 (1980) no. 2, 133–141.
- Y. Gutiérrez-Tovar and J. Méndez-Pérez, “The kontorovich–lebedev integral transformation with a hankel function kernel in a space of generalized functions of doubly exponential descent,” Journal of Mathematical Analysis and Applications 328 (2007) no. 1, 359–369. https://www.sciencedirect.com/science/article/pii/S0022247X0600518X.
- D. Karateev, P. Kravchuk, and D. Simmons-Duffin, “Harmonic Analysis and Mean Field Theory,” JHEP 10 (2019) 217, arXiv:1809.05111 [hep-th].
- B. Allen, “Vacuum States in de Sitter Space,” Phys. Rev. D 32 (1985) 3136.
- D. Green, Y. Huang, C.-H. Shen, and D. Baumann, “Positivity from Cosmological Correlators,” arXiv:2310.02490 [hep-th].
- M. Hogervorst, J. a. Penedones, and K. S. Vaziri, “Towards the non-perturbative cosmological bootstrap,” JHEP 02 (2023) 162, arXiv:2107.13871 [hep-th].
- J. Penedones, K. Salehi Vaziri, and Z. Sun, “Hilbert space of Quantum Field Theory in de Sitter spacetime,” arXiv:2301.04146 [hep-th].
- M. Loparco, J. Penedones, K. Salehi Vaziri, and Z. Sun, “The Källén-Lehmann representation in de Sitter spacetime,” JHEP 12 (2023) 159, arXiv:2306.00090 [hep-th].
- M. H. G. Lee, C. McCulloch, and E. Pajer, “Leading loops in cosmological correlators,” JHEP 11 (2023) 038, arXiv:2305.11228 [hep-th].
- Z.-Z. Xianyu and H. Zhang, “Bootstrapping one-loop inflation correlators with the spectral decomposition,” JHEP 04 (2023) 103, arXiv:2211.03810 [hep-th].
- Z. Qin and Z.-Z. Xianyu, “Nonanalyticity and on-shell factorization of inflation correlators at all loop orders,” JHEP 01 (2024) 168, arXiv:2308.14802 [hep-th].
- Z. Qin and Z.-Z. Xianyu, “Inflation correlators at the one-loop order: nonanalyticity, factorization, cutting rule, and OPE,” JHEP 09 (2023) 116, arXiv:2304.13295 [hep-th].
- A. Bzowski, P. McFadden, and K. Skenderis, “Renormalisation of IR divergences and holography in de Sitter,” arXiv:2312.17316 [hep-th].
- K. Skenderis, “Lecture notes on holographic renormalization,” Class. Quant. Grav. 19 (2002) 5849–5876, arXiv:hep-th/0209067.
- D.-G. Wang, G. L. Pimentel, and A. Achúcarro, “Bootstrapping multi-field inflation: non-Gaussianities from light scalars revisited,” JCAP 05 (2023) 043, arXiv:2212.14035 [astro-ph.CO].
- V. Gorbenko and L. Senatore, “λϕ4𝜆superscriptitalic-ϕ4\lambda\phi^{4}italic_λ italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT in dS,” arXiv:1911.00022 [hep-th].
- M. Baumgart and R. Sundrum, “De Sitter Diagrammar and the Resummation of Time,” JHEP 07 (2020) 119, arXiv:1912.09502 [hep-th].
- D. Green and A. Premkumar, “Dynamical RG and Critical Phenomena in de Sitter Space,” JHEP 04 (2020) 064, arXiv:2001.05974 [hep-th].
- T. Cohen and D. Green, “Soft de Sitter Effective Theory,” JHEP 12 (2020) 041, arXiv:2007.03693 [hep-th].
- S. Céspedes, A.-C. Davis, and D.-G. Wang, “On the IR Divergences in de Sitter Space: loops, resummation and the semi-classical wavefunction,” arXiv:2311.17990 [hep-th].
- C. Cheung, P. Creminelli, A. L. Fitzpatrick, J. Kaplan, and L. Senatore, “The Effective Field Theory of Inflation,” JHEP 03 (2008) 014, arXiv:0709.0293 [hep-th].
- G. Cabass, E. Pajer, D. Stefanyszyn, and J. Supel, “Bootstrapping large graviton non-Gaussianities,” JHEP 05 (2022) 077, arXiv:2109.10189 [hep-th].
- J. Bonifacio, H. Goodhew, A. Joyce, E. Pajer, and D. Stefanyszyn, “The graviton four-point function in de Sitter space,” JHEP 06 (2023) 212, arXiv:2212.07370 [hep-th].
- A. Bzowski, P. McFadden, and K. Skenderis, “A handbook of holographic 4-point functions,” JHEP 12 (2022) 039, arXiv:2207.02872 [hep-th].
- F. Caloro and P. McFadden, “𝒜𝒜\mathcal{A}caligraphic_A-hypergeometric functions and creation operators for Feynman and Witten diagrams,” arXiv:2309.15895 [hep-th].
- Z. Qin and Z.-Z. Xianyu, “Helical inflation correlators: partial Mellin-Barnes and bootstrap equations,” JHEP 04 (2023) 059, arXiv:2208.13790 [hep-th].
- Z. Qin and Z.-Z. Xianyu, “Closed-form formulae for inflation correlators,” JHEP 07 (2023) 001, arXiv:2301.07047 [hep-th].
- Z.-Z. Xianyu and J. Zang, “Inflation correlators with multiple massive exchanges,” JHEP 03 (2024) 070, arXiv:2309.10849 [hep-th].
- B. Fan and Z.-Z. Xianyu, “Cosmological Amplitudes in Power-Law FRW Universe,” arXiv:2403.07050 [hep-th].
- A. Bzowski, P. McFadden, and K. Skenderis, “Conformal n𝑛nitalic_n-point functions in momentum space,” Phys. Rev. Lett. 124 (2020) no. 13, 131602, arXiv:1910.10162 [hep-th].
- A. Bzowski, P. McFadden, and K. Skenderis, “Conformal correlators as simplex integrals in momentum space,” JHEP 01 (2021) 192, arXiv:2008.07543 [hep-th].
- F. Caloro and P. McFadden, “Shift operators from the simplex representation in momentum-space CFT,” JHEP 03 (2023) 106, arXiv:2212.03887 [hep-th].
- N. Arkani-Hamed, D. Baumann, A. Hillman, A. Joyce, H. Lee, and G. L. Pimentel, “Kinematic Flow and the Emergence of Time,” arXiv:2312.05300 [hep-th].
- N. Arkani-Hamed, D. Baumann, A. Hillman, A. Joyce, H. Lee, and G. L. Pimentel, “Differential Equations for Cosmological Correlators,” arXiv:2312.05303 [hep-th].
- D. Green and E. Pajer, “On the Symmetries of Cosmological Perturbations,” JCAP 09 (2020) 032, arXiv:2004.09587 [hep-th].
- E. Pajer, D. Stefanyszyn, and J. Supel, “The Boostless Bootstrap: Amplitudes without Lorentz boosts,” JHEP 12 (2020) 198, arXiv:2007.00027 [hep-th]. [Erratum: JHEP 04, 023 (2022)].
- E. Pajer, “Building a Boostless Bootstrap for the Bispectrum,” JCAP 01 (2021) 023, arXiv:2010.12818 [hep-th].
- C. Duaso Pueyo and E. Pajer, “A cosmological bootstrap for resonant non-Gaussianity,” JHEP 24 (2020) 098, arXiv:2311.01395 [hep-th].
- G. L. Pimentel and D.-G. Wang, “Boostless cosmological collider bootstrap,” JHEP 10 (2022) 177, arXiv:2205.00013 [hep-th].
- Z. Du and D. Stefanyszyn, “Soft Theorems for Boostless Amplitudes,” arXiv:2403.05459 [hep-th].
- J. Penedones, “Writing CFT correlation functions as AdS scattering amplitudes,” JHEP 03 (2011) 025, arXiv:1011.1485 [hep-th].
- A. L. Fitzpatrick, J. Kaplan, J. Penedones, S. Raju, and B. C. van Rees, “A Natural Language for AdS/CFT Correlators,” JHEP 11 (2011) 095, arXiv:1107.1499 [hep-th].
- S. Raju, “New Recursion Relations and a Flat Space Limit for AdS/CFT Correlators,” Phys. Rev. D 85 (2012) 126009, arXiv:1201.6449 [hep-th].
- J. Penedones, J. A. Silva, and A. Zhiboedov, “Nonperturbative Mellin Amplitudes: Existence, Properties, Applications,” JHEP 08 (2020) 031, arXiv:1912.11100 [hep-th].
- C. Sleight, “A Mellin Space Approach to Cosmological Correlators,” JHEP 01 (2020) 090, arXiv:1906.12302 [hep-th].
- C. Sleight and M. Taronna, “Bootstrapping Inflationary Correlators in Mellin Space,” JHEP 02 (2020) 098, arXiv:1907.01143 [hep-th].
- C. Sleight and M. Taronna, “From AdS to dS exchanges: Spectral representation, Mellin amplitudes, and crossing,” Phys. Rev. D 104 (2021) no. 8, L081902, arXiv:2007.09993 [hep-th].
- C. Sleight and M. Taronna, “From dS to AdS and back,” JHEP 12 (2021) 074, arXiv:2109.02725 [hep-th].
- L. Di Pietro, V. Gorbenko, and S. Komatsu, “Analyticity and unitarity for cosmological correlators,” JHEP 03 (2022) 023, arXiv:2108.01695 [hep-th].
- L. Di Pietro, V. Gorbenko, and S. Komatsu, “Cosmological Correlators at Finite Coupling,” arXiv:2312.17195 [hep-th].
- D. Marolf, I. A. Morrison, and M. Srednicki, “Perturbative S-matrix for massive scalar fields in global de Sitter space,” Class. Quant. Grav. 30 (2013) 155023, arXiv:1209.6039 [hep-th].
- D. Baumann and D. Green, “Equilateral Non-Gaussianity and New Physics on the Horizon,” JCAP 09 (2011) 014, arXiv:1102.5343 [hep-th].
- D. Baumann, D. Green, H. Lee, and R. A. Porto, “Signs of Analyticity in Single-Field Inflation,” Phys. Rev. D 93 (2016) no. 2, 023523, arXiv:1502.07304 [hep-th].
- T. Grall and S. Melville, “Inflation in motion: unitarity constraints in effective field theories with (spontaneously) broken Lorentz symmetry,” JCAP 09 (2020) 017, arXiv:2005.02366 [gr-qc].
- T. Grall and S. Melville, “Positivity bounds without boosts: New constraints on low energy effective field theories from the UV,” Phys. Rev. D 105 (2022) no. 12, L121301, arXiv:2102.05683 [hep-th].
- D. Green, Y. Huang, and C.-H. Shen, “Inflationary Adler conditions,” Phys. Rev. D 107 (2023) no. 4, 043534, arXiv:2208.14544 [hep-th].
- M. Freytsis, S. Kumar, G. N. Remmen, and N. L. Rodd, “Multifield positivity bounds for inflation,” JHEP 09 (2023) 041, arXiv:2210.10791 [hep-th].
- S. Melville and J. Noller, “Positivity in the Sky: Constraining dark energy and modified gravity from the UV,” Phys. Rev. D 101 (2020) no. 2, 021502, arXiv:1904.05874 [astro-ph.CO]. [Erratum: Phys.Rev.D 102, 049902 (2020)].
- C. de Rham, S. Melville, and J. Noller, “Positivity bounds on dark energy: when matter matters,” JCAP 08 (2021) 018, arXiv:2103.06855 [astro-ph.CO].
- A.-C. Davis and S. Melville, “Scalar fields near compact objects: resummation versus UV completion,” JCAP 11 (2021) 012, arXiv:2107.00010 [gr-qc].
- S. Melville and J. Noller, “Positivity bounds from multiple vacua and their cosmological consequences,” JCAP 06 (2022) no. 06, 031, arXiv:2202.01222 [hep-th].
- D. de Boe, G. Ye, F. Renzi, I. S. Albuquerque, N. Frusciante, and A. Silvestri, “Phenomenology of Horndeski Gravity under Positivity Bounds,” arXiv:2403.13096 [astro-ph.CO].
- The University Press, 1922.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.