Size dependent solid-solid crystallization of halide perovskites (2404.05644v1)
Abstract: The efficiency and stability of halide perovskite-based solar cells and light-emitting diodes directly depend on the intricate dynamics of solid-solid crystallization[1-23]. In this study, we employ a multi-scale approach using random phase approximation, density functional theory, machine learning potentials, reduced charge force fields, and both enhanced sampling biased and brute-force unbiased molecular dynamics simulations to understand the solid-solid phase transitions in cesium lead iodide perovskite. Our simulations uncover that the direct phase transition from the non-perovskite to the perovskite involves the formation of stacked-faulted and low-dimensional intermediate structures. Through extensive large-scale all-atom simulations encompassing up to 650,000 atoms, we observe that solid-solid crystallization may require the formation of a sufficiently large critical nucleus to grow into a faceted perovskite crystal. Based on simulations, we determine that utilizing (100)-faceted seeded crystallization could offer a promising path for manufacturing high-performance and stable perovskite solar cells.
- P. Ahlawat, Crystallization of FAPbI3: Polytypes and stacking faults, The Journal of Chemical Physics 159, 151102 (2023a).
- C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors, Science 286, 945 (1999).
- Interactive Best Research-Cell Efficiency Chart.
- C. K. Møller, Crystal Structure and Photoconductivity of Cæsium Plumbohalides, Nature 182, 1436 (1958).
- D. Trots and S. Myagkota, High-temperature structural evolution of caesium and rubidium triiodoplumbates, Journal of Physics and Chemistry of Solids 69, 2520 (2008).
- S. Pramchu, A. P. Jaroenjittichai, and Y. Laosiritaworn, Effects of bromine substitution for iodine on structural stability and phase transition of CsPbI3, Applied Surface Science 496, 143593 (2019).
- Statistical Physics (Elsevier, 1980).
- K. Binder, Theory of first-order phase transitions, Reports on Progress in Physics 50, 783 (1987).
- D. Frenkel and B. Smit, Understanding molecular simulation: from algorithms to applications, 2nd ed., Computational science series No. 1 (Academic Press, San Diego, 2002).
- S. Auer and D. Frenkel, Prediction of absolute crystal-nucleation rate in hard-sphere colloids, Nature 409, 1020 (2001).
- B. Peters, Reaction rate theory and rare events (Elsevier, Amsterdam ; Cambrige, MA, 2017) oCLC: ocn969963116.
- D. Frenkel, Entropy-driven phase transitions, Physica A: Statistical Mechanics and its Applications 263, 26 (1999).
- M. Grünwald, E. Rabani, and C. Dellago, Mechanisms of the Wurtzite to Rocksalt Transformation in CdSe Nanocrystals, Physical Review Letters 96, 255701 (2006).
- M. Grünwald and C. Dellago, Nucleation and Growth in Structural Transformations of Nanocrystals, Nano Letters 9, 2099 (2009).
- D. Zahn, Nucleation mechanism and kinetics of the perovskite to post-perovskite transition of MgSiO3 under extreme conditions, Chemical Physics Letters 573, 5 (2013).
- J. Anwar and D. Zahn, Polymorphic phase transitions: Macroscopic theory and molecular simulation, Advanced Drug Delivery Reviews 117, 47 (2017).
- J. Rogal, E. Schneider, and M. E. Tuckerman, Neural-Network-Based Path Collective Variables for Enhanced Sampling of Phase Transformations, Physical Review Letters 123, 245701 (2019).
- K. J. Caspersen and E. A. Carter, Finding transition states for crystalline solid–solid phase transformations, Proceedings of the National Academy of Sciences 102, 6738 (2005).
- E. Sanz and C. Valeriani, Mediated by a liquid, Nature Materials 14, 15 (2015).
- G. Torrie and J. Valleau, Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling, Journal of Computational Physics 23, 187 (1977).
- P. Virnau and M. Müller, Calculation of free energy through successive umbrella sampling, The Journal of Chemical Physics 120, 10925 (2004).
- T. Huber, A. E. Torda, and W. F. Van Gunsteren, Local elevation: A method for improving the searching properties of molecular dynamics simulation, Journal of Computer-Aided Molecular Design 8, 695 (1994).
- M. Invernizzi and M. Parrinello, Rethinking Metadynamics: From Bias Potentials to Probability Distributions, The Journal of Physical Chemistry Letters 11, 2731 (2020).
- J. Debnath and M. Parrinello, Gaussian Mixture-Based Enhanced Sampling for Statics and Dynamics, The Journal of Physical Chemistry Letters 11, 5076 (2020).
- P. Maragakis, A. Van Der Vaart, and M. Karplus, Gaussian-Mixture Umbrella Sampling, The Journal of Physical Chemistry B 113, 4664 (2009).
- P.-R. Ten Wolde, M. J. Ruiz-Montero, and D. Frenkel, Simulation of homogeneous crystal nucleation close to coexistence, Faraday Discussions 104, 93 (1996).
- M. Invernizzi, P. M. Piaggi, and M. Parrinello, Unified Approach to Enhanced Sampling, Physical Review X 10, 041034 (2020).
- J. McCarty and M. Parrinello, A variational conformational dynamics approach to the selection of collective variables in metadynamics, The Journal of Chemical Physics 147, 204109 (2017).
- M. M. Sultan and V. S. Pande, Automated design of collective variables using supervised machine learning, The Journal of Chemical Physics 149, 094106 (2018).
- W. Lechner and C. Dellago, Accurate determination of crystal structures based on averaged local bond order parameters, The Journal of Chemical Physics 129, 114707 (2008).
- L. Bonati and M. Parrinello, Silicon Liquid Structure and Crystal Nucleation from Ab Initio Deep Metadynamics, Physical Review Letters 121, 265701 (2018).
- P. Ahlawat, Molecular dynamics simulations of nucleation of hexagonal($\delta$) and cubic($\alpha$)-FAPbI$_3$ perovskites from solution (2023b), arXiv:2306.14172 [cond-mat, physics:physics].
- L. S. Ornstein, Accidental deviations of density and opalescence at the critical point of a single substance, Proc. Akad. Sci. 17, 793 (1914).
- J. G. Kirkwood, Statistical Mechanics of Fluid Mixtures, The Journal of Chemical Physics 3, 300 (1935).
- J. Van Leeuwen, J. Groeneveld, and J. De Boer, New method for the calculation of the pair correlation function. I, Physica 25, 792 (1959).
- E. E. Salpeter, On Mayer’s theory of cluster expansions, Annals of Physics 5, 183 (1958).
- P. Hirel, P. Carrez, and P. Cordier, From glissile to sessile: Effect of temperature on <110> dislocations in perovskite materials, Scripta Materialia 120, 67 (2016).
- G. A. Gallet and F. Pietrucci, Structural cluster analysis of chemical reactions in solution, The Journal of Chemical Physics 139, 074101 (2013).
- D. Bohm and D. Pines, A Collective Description of Electron Interactions. I. Magnetic Interactions, Physical Review 82, 625 (1951).
- M. Gell-Mann and K. A. Brueckner, Correlation Energy of an Electron Gas at High Density, Physical Review 106, 364 (1957).
- J. Harl, L. Schimka, and G. Kresse, Assessing the quality of the random phase approximation for lattice constants and atomization energies of solids, Physical Review B 81, 115126 (2010).
- M. Kaltak, J. Klimeš, and G. Kresse, Cubic scaling algorithm for the random phase approximation: Self-interstitials and vacancies in Si, Physical Review B 90, 054115 (2014).
- A. D. Becke and E. R. Johnson, A density-functional model of the dispersion interaction, The Journal of Chemical Physics 123, 154101 (2005).
- E. R. Johnson and A. D. Becke, A post-Hartree-Fock model of intermolecular interactions: Inclusion of higher-order corrections, The Journal of Chemical Physics 124, 174104 (2006).
- S. Grimme, S. Ehrlich, and L. Goerigk, Effect of the damping function in dispersion corrected density functional theory, Journal of Computational Chemistry 32, 1456 (2011).
- J. Klimeš, D. R. Bowler, and A. Michaelides, Van der Waals density functionals applied to solids, Physical Review B 83, 195131 (2011).
- P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Physical Review 136, B864 (1964).
- W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review 140, A1133 (1965).
- H. Xue, G. Brocks, and S. Tao, First-principles calculations of defects in metal halide perovskites: A performance comparison of density functionals, Physical Review Materials 5, 125408 (2021).
- R. Drautz, Atomic cluster expansion for accurate and transferable interatomic potentials, Physical Review B 99, 014104 (2019).
- P. Ball, Size matters, Nature Materials 21, 1341 (2022).
- P. Bolhuis, M. Hagen, and D. Frenkel, Isostructural solid-solid transition in crystalline systems with short-ranged interaction, Physical Review E 50, 4880 (1994).
- P. G. Debenedetti, Metastable liquids: concepts and principles, Physical chemistry (Princeton University Press, Princeton, N.J, 1996).
- X.-M. Bai and M. Li, Test of classical nucleation theory via molecular-dynamics simulation, The Journal of Chemical Physics 122, 224510 (2005).
- A. Z. Panagiotopoulos, Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble, Molecular Physics 61, 813 (1987).
- X.-M. Bai and M. Li, Calculation of solid-liquid interfacial free energy: A classical nucleation theory based approach, The Journal of Chemical Physics 124, 124707 (2006).
- K. Binder and P. Virnau, Phase transitions and phase coexistence: equilibrium systems versus externally driven or active systems - Some perspectives, Soft Materials 19, 267 (2021).
- P. Rein Ten Wolde, M. J. Ruiz-Montero, and D. Frenkel, Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling, The Journal of Chemical Physics 104, 9932 (1996).
- J. S. Van Duijneveldt and D. Frenkel, Computer simulation study of free energy barriers in crystal nucleation, The Journal of Chemical Physics 96, 4655 (1992).
- W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual molecular dynamics, Journal of Molecular Graphics 14, 33 (1996).
- H.-J. Werner and M. Schütz, An efficient local coupled cluster method for accurate thermochemistry of large systems, The Journal of Chemical Physics 135, 144116 (2011).
- P. R. Nagy, G. Samu, and M. Kállay, Optimization of the Linear-Scaling Local Natural Orbital CCSD(T) Method: Improved Algorithm and Benchmark Applications, Journal of Chemical Theory and Computation 14, 4193 (2018).
- M. Ochi, TC++: First-principles calculation code for solids using the transcorrelated method, Computer Physics Communications 287, 108687 (2023).
- W. Zhong, D. Vanderbilt, and K. M. Rabe, First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO 3, Physical Review B 52, 6301 (1995).
- J. Mannhart and D. G. Schlom, Oxide Interfaces—An Opportunity for Electronics, Science 327, 1607 (2010).
- A. Ohtomo and H. Y. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface, Nature 427, 423 (2004).
- J. G. Bednorz and K. A. Müller, Perovskite-type oxides—The new approach to high- T c superconductivity, Reviews of Modern Physics 60, 585 (1988).
- S. Datta and B. Das, Electronic analog of the electro-optic modulator, Applied Physics Letters 56, 665 (1990).
- N. Jones, How to stop data centres from gobbling up the world’s electricity, Nature 561, 163 (2018).
- A. Andrae and T. Edler, On Global Electricity Usage of Communication Technology: Trends to 2030, Challenges 6, 117 (2015).
- R. Ramesh, Materials for a Sustainable Microelectronics Future: Electric Field Control of Magnetism with Multiferroics, Journal of the Indian Institute of Science 102, 489 (2022).
- G. Bussi, D. Donadio, and M. Parrinello, Canonical sampling through velocity rescaling, The Journal of Chemical Physics 126, 014101 (2007).
- G. J. Martyna, D. J. Tobias, and M. L. Klein, Constant pressure molecular dynamics algorithms, The Journal of Chemical Physics 101, 4177 (1994).
- M. Parrinello and A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method, Journal of Applied Physics 52, 7182 (1981).
- W. Shinoda, M. Shiga, and M. Mikami, Rapid estimation of elastic constants by molecular dynamics simulation under constant stress, Physical Review B 69, 134103 (2004).
- R. García Fernández, J. L. F. Abascal, and C. Vega, The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface, The Journal of Chemical Physics 124, 144506 (2006).
- D. B. Straus, S. Guo, and R. J. Cava, Kinetically Stable Single Crystals of Perovskite-Phase CsPbI 33{}_{\textrm{3}}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT, Journal of the American Chemical Society 141, 11435 (2019).
- G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science 6, 15 (1996a).
- G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physical Review B 54, 11169 (1996b).
- G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B 59, 1758 (1999).
- J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters 77, 3865 (1996).
- M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, 2017).
- Z. Fan, Improving the accuracy of the neuroevolution machine learning potential for multi-component systems, Journal of Physics: Condensed Matter 34, 125902 (2022).
- E. Fransson, J. Wiktor, and P. Erhart, Phase Transitions in Inorganic Halide Perovskites from Machine-Learned Potentials, The Journal of Physical Chemistry C 127, 13773 (2023a).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.