Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Size dependent solid-solid crystallization of halide perovskites (2404.05644v1)

Published 8 Apr 2024 in cond-mat.mtrl-sci

Abstract: The efficiency and stability of halide perovskite-based solar cells and light-emitting diodes directly depend on the intricate dynamics of solid-solid crystallization[1-23]. In this study, we employ a multi-scale approach using random phase approximation, density functional theory, machine learning potentials, reduced charge force fields, and both enhanced sampling biased and brute-force unbiased molecular dynamics simulations to understand the solid-solid phase transitions in cesium lead iodide perovskite. Our simulations uncover that the direct phase transition from the non-perovskite to the perovskite involves the formation of stacked-faulted and low-dimensional intermediate structures. Through extensive large-scale all-atom simulations encompassing up to 650,000 atoms, we observe that solid-solid crystallization may require the formation of a sufficiently large critical nucleus to grow into a faceted perovskite crystal. Based on simulations, we determine that utilizing (100)-faceted seeded crystallization could offer a promising path for manufacturing high-performance and stable perovskite solar cells.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (84)
  1. P. Ahlawat, Crystallization of FAPbI3: Polytypes and stacking faults, The Journal of Chemical Physics 159, 151102 (2023a).
  2. C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors, Science 286, 945 (1999).
  3. Interactive Best Research-Cell Efficiency Chart.
  4. C. K. Møller, Crystal Structure and Photoconductivity of Cæsium Plumbohalides, Nature 182, 1436 (1958).
  5. D. Trots and S. Myagkota, High-temperature structural evolution of caesium and rubidium triiodoplumbates, Journal of Physics and Chemistry of Solids 69, 2520 (2008).
  6. S. Pramchu, A. P. Jaroenjittichai, and Y. Laosiritaworn, Effects of bromine substitution for iodine on structural stability and phase transition of CsPbI3, Applied Surface Science 496, 143593 (2019).
  7. Statistical Physics (Elsevier, 1980).
  8. K. Binder, Theory of first-order phase transitions, Reports on Progress in Physics 50, 783 (1987).
  9. D. Frenkel and B. Smit, Understanding molecular simulation: from algorithms to applications, 2nd ed., Computational science series No. 1 (Academic Press, San Diego, 2002).
  10. S. Auer and D. Frenkel, Prediction of absolute crystal-nucleation rate in hard-sphere colloids, Nature 409, 1020 (2001).
  11. B. Peters, Reaction rate theory and rare events (Elsevier, Amsterdam ; Cambrige, MA, 2017) oCLC: ocn969963116.
  12. D. Frenkel, Entropy-driven phase transitions, Physica A: Statistical Mechanics and its Applications 263, 26 (1999).
  13. M. Grünwald, E. Rabani, and C. Dellago, Mechanisms of the Wurtzite to Rocksalt Transformation in CdSe Nanocrystals, Physical Review Letters 96, 255701 (2006).
  14. M. Grünwald and C. Dellago, Nucleation and Growth in Structural Transformations of Nanocrystals, Nano Letters 9, 2099 (2009).
  15. D. Zahn, Nucleation mechanism and kinetics of the perovskite to post-perovskite transition of MgSiO3 under extreme conditions, Chemical Physics Letters 573, 5 (2013).
  16. J. Anwar and D. Zahn, Polymorphic phase transitions: Macroscopic theory and molecular simulation, Advanced Drug Delivery Reviews 117, 47 (2017).
  17. J. Rogal, E. Schneider, and M. E. Tuckerman, Neural-Network-Based Path Collective Variables for Enhanced Sampling of Phase Transformations, Physical Review Letters 123, 245701 (2019).
  18. K. J. Caspersen and E. A. Carter, Finding transition states for crystalline solid–solid phase transformations, Proceedings of the National Academy of Sciences 102, 6738 (2005).
  19. E. Sanz and C. Valeriani, Mediated by a liquid, Nature Materials 14, 15 (2015).
  20. G. Torrie and J. Valleau, Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling, Journal of Computational Physics 23, 187 (1977).
  21. P. Virnau and M. Müller, Calculation of free energy through successive umbrella sampling, The Journal of Chemical Physics 120, 10925 (2004).
  22. T. Huber, A. E. Torda, and W. F. Van Gunsteren, Local elevation: A method for improving the searching properties of molecular dynamics simulation, Journal of Computer-Aided Molecular Design 8, 695 (1994).
  23. M. Invernizzi and M. Parrinello, Rethinking Metadynamics: From Bias Potentials to Probability Distributions, The Journal of Physical Chemistry Letters 11, 2731 (2020).
  24. J. Debnath and M. Parrinello, Gaussian Mixture-Based Enhanced Sampling for Statics and Dynamics, The Journal of Physical Chemistry Letters 11, 5076 (2020).
  25. P. Maragakis, A. Van Der Vaart, and M. Karplus, Gaussian-Mixture Umbrella Sampling, The Journal of Physical Chemistry B 113, 4664 (2009).
  26. P.-R. Ten Wolde, M. J. Ruiz-Montero, and D. Frenkel, Simulation of homogeneous crystal nucleation close to coexistence, Faraday Discussions 104, 93 (1996).
  27. M. Invernizzi, P. M. Piaggi, and M. Parrinello, Unified Approach to Enhanced Sampling, Physical Review X 10, 041034 (2020).
  28. J. McCarty and M. Parrinello, A variational conformational dynamics approach to the selection of collective variables in metadynamics, The Journal of Chemical Physics 147, 204109 (2017).
  29. M. M. Sultan and V. S. Pande, Automated design of collective variables using supervised machine learning, The Journal of Chemical Physics 149, 094106 (2018).
  30. W. Lechner and C. Dellago, Accurate determination of crystal structures based on averaged local bond order parameters, The Journal of Chemical Physics 129, 114707 (2008).
  31. L. Bonati and M. Parrinello, Silicon Liquid Structure and Crystal Nucleation from Ab Initio Deep Metadynamics, Physical Review Letters 121, 265701 (2018).
  32. P. Ahlawat, Molecular dynamics simulations of nucleation of hexagonal($\delta$) and cubic($\alpha$)-FAPbI$_3$ perovskites from solution (2023b), arXiv:2306.14172 [cond-mat, physics:physics].
  33. L. S. Ornstein, Accidental deviations of density and opalescence at the critical point of a single substance, Proc. Akad. Sci. 17, 793 (1914).
  34. J. G. Kirkwood, Statistical Mechanics of Fluid Mixtures, The Journal of Chemical Physics 3, 300 (1935).
  35. J. Van Leeuwen, J. Groeneveld, and J. De Boer, New method for the calculation of the pair correlation function. I, Physica 25, 792 (1959).
  36. E. E. Salpeter, On Mayer’s theory of cluster expansions, Annals of Physics 5, 183 (1958).
  37. P. Hirel, P. Carrez, and P. Cordier, From glissile to sessile: Effect of temperature on <110> dislocations in perovskite materials, Scripta Materialia 120, 67 (2016).
  38. G. A. Gallet and F. Pietrucci, Structural cluster analysis of chemical reactions in solution, The Journal of Chemical Physics 139, 074101 (2013).
  39. D. Bohm and D. Pines, A Collective Description of Electron Interactions. I. Magnetic Interactions, Physical Review 82, 625 (1951).
  40. M. Gell-Mann and K. A. Brueckner, Correlation Energy of an Electron Gas at High Density, Physical Review 106, 364 (1957).
  41. J. Harl, L. Schimka, and G. Kresse, Assessing the quality of the random phase approximation for lattice constants and atomization energies of solids, Physical Review B 81, 115126 (2010).
  42. M. Kaltak, J. Klimeš, and G. Kresse, Cubic scaling algorithm for the random phase approximation: Self-interstitials and vacancies in Si, Physical Review B 90, 054115 (2014).
  43. A. D. Becke and E. R. Johnson, A density-functional model of the dispersion interaction, The Journal of Chemical Physics 123, 154101 (2005).
  44. E. R. Johnson and A. D. Becke, A post-Hartree-Fock model of intermolecular interactions: Inclusion of higher-order corrections, The Journal of Chemical Physics 124, 174104 (2006).
  45. S. Grimme, S. Ehrlich, and L. Goerigk, Effect of the damping function in dispersion corrected density functional theory, Journal of Computational Chemistry 32, 1456 (2011).
  46. J. Klimeš, D. R. Bowler, and A. Michaelides, Van der Waals density functionals applied to solids, Physical Review B 83, 195131 (2011).
  47. P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Physical Review 136, B864 (1964).
  48. W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review 140, A1133 (1965).
  49. H. Xue, G. Brocks, and S. Tao, First-principles calculations of defects in metal halide perovskites: A performance comparison of density functionals, Physical Review Materials 5, 125408 (2021).
  50. R. Drautz, Atomic cluster expansion for accurate and transferable interatomic potentials, Physical Review B 99, 014104 (2019).
  51. P. Ball, Size matters, Nature Materials 21, 1341 (2022).
  52. P. Bolhuis, M. Hagen, and D. Frenkel, Isostructural solid-solid transition in crystalline systems with short-ranged interaction, Physical Review E 50, 4880 (1994).
  53. P. G. Debenedetti, Metastable liquids: concepts and principles, Physical chemistry (Princeton University Press, Princeton, N.J, 1996).
  54. X.-M. Bai and M. Li, Test of classical nucleation theory via molecular-dynamics simulation, The Journal of Chemical Physics 122, 224510 (2005).
  55. A. Z. Panagiotopoulos, Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble, Molecular Physics 61, 813 (1987).
  56. X.-M. Bai and M. Li, Calculation of solid-liquid interfacial free energy: A classical nucleation theory based approach, The Journal of Chemical Physics 124, 124707 (2006).
  57. K. Binder and P. Virnau, Phase transitions and phase coexistence: equilibrium systems versus externally driven or active systems - Some perspectives, Soft Materials 19, 267 (2021).
  58. P. Rein Ten Wolde, M. J. Ruiz-Montero, and D. Frenkel, Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling, The Journal of Chemical Physics 104, 9932 (1996).
  59. J. S. Van Duijneveldt and D. Frenkel, Computer simulation study of free energy barriers in crystal nucleation, The Journal of Chemical Physics 96, 4655 (1992).
  60. W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual molecular dynamics, Journal of Molecular Graphics 14, 33 (1996).
  61. H.-J. Werner and M. Schütz, An efficient local coupled cluster method for accurate thermochemistry of large systems, The Journal of Chemical Physics 135, 144116 (2011).
  62. P. R. Nagy, G. Samu, and M. Kállay, Optimization of the Linear-Scaling Local Natural Orbital CCSD(T) Method: Improved Algorithm and Benchmark Applications, Journal of Chemical Theory and Computation 14, 4193 (2018).
  63. M. Ochi, TC++: First-principles calculation code for solids using the transcorrelated method, Computer Physics Communications 287, 108687 (2023).
  64. W. Zhong, D. Vanderbilt, and K. M. Rabe, First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO 3, Physical Review B 52, 6301 (1995).
  65. J. Mannhart and D. G. Schlom, Oxide Interfaces—An Opportunity for Electronics, Science 327, 1607 (2010).
  66. A. Ohtomo and H. Y. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface, Nature 427, 423 (2004).
  67. J. G. Bednorz and K. A. Müller, Perovskite-type oxides—The new approach to high- T c superconductivity, Reviews of Modern Physics 60, 585 (1988).
  68. S. Datta and B. Das, Electronic analog of the electro-optic modulator, Applied Physics Letters 56, 665 (1990).
  69. N. Jones, How to stop data centres from gobbling up the world’s electricity, Nature 561, 163 (2018).
  70. A. Andrae and T. Edler, On Global Electricity Usage of Communication Technology: Trends to 2030, Challenges 6, 117 (2015).
  71. R. Ramesh, Materials for a Sustainable Microelectronics Future: Electric Field Control of Magnetism with Multiferroics, Journal of the Indian Institute of Science 102, 489 (2022).
  72. G. Bussi, D. Donadio, and M. Parrinello, Canonical sampling through velocity rescaling, The Journal of Chemical Physics 126, 014101 (2007).
  73. G. J. Martyna, D. J. Tobias, and M. L. Klein, Constant pressure molecular dynamics algorithms, The Journal of Chemical Physics 101, 4177 (1994).
  74. M. Parrinello and A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method, Journal of Applied Physics 52, 7182 (1981).
  75. W. Shinoda, M. Shiga, and M. Mikami, Rapid estimation of elastic constants by molecular dynamics simulation under constant stress, Physical Review B 69, 134103 (2004).
  76. R. García Fernández, J. L. F. Abascal, and C. Vega, The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface, The Journal of Chemical Physics 124, 144506 (2006).
  77. D. B. Straus, S. Guo, and R. J. Cava, Kinetically Stable Single Crystals of Perovskite-Phase CsPbI 33{}_{\textrm{3}}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT, Journal of the American Chemical Society 141, 11435 (2019).
  78. G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science 6, 15 (1996a).
  79. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physical Review B 54, 11169 (1996b).
  80. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B 59, 1758 (1999).
  81. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters 77, 3865 (1996).
  82. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, 2017).
  83. Z. Fan, Improving the accuracy of the neuroevolution machine learning potential for multi-component systems, Journal of Physics: Condensed Matter 34, 125902 (2022).
  84. E. Fransson, J. Wiktor, and P. Erhart, Phase Transitions in Inorganic Halide Perovskites from Machine-Learned Potentials, The Journal of Physical Chemistry C 127, 13773 (2023a).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 46 likes.

Upgrade to Pro to view all of the tweets about this paper: