Vacuum amplitudes and time-like causal unitary in the loop-tree duality
Abstract: We present the first proof-of-concept application to decay processes at higher perturbative orders of LTD causal unitary, a novel methodology that exploits the causal properties of vacuum amplitudes in the loop-tree duality (LTD) and is directly well-defined in the four physical dimensions of the space-time. The generation of loop- and tree-level contributions to the differential decay rates from a kernel multiloop vacuum amplitude is shown in detail, and explicit expressions are presented for selected processes that are suitable for a lightweight understanding of the method. Specifically, we provide a clear physical interpretation of the local cancellation of soft, collinear and threshold singularities, and of the local renormalisation of ultraviolet singularities. The presentation is illustrated with numerical results that showcase the advantages of the method.
- G. F. R. Sborlini, Geometrical approach to causality in multiloop amplitudes, Phys. Rev. D 104, 036014 (2021), arXiv:2102.05062 [hep-ph] .
- W. J. Torres Bobadilla, Loop-tree duality from vertices and edges, JHEP 04, 183, arXiv:2102.05048 [hep-ph] .
- W. J. T. Bobadilla, Lotty – The loop-tree duality automation, Eur. Phys. J. C 81, 514 (2021), arXiv:2103.09237 [hep-ph] .
- J. de Jesús Aguilera-Verdugo et al., A Stroll through the Loop-Tree Duality, Symmetry 13, 1029 (2021), arXiv:2104.14621 [hep-ph] .
- P. Benincasa and W. J. T. Bobadilla, Physical representations for scattering amplitudes and the wavefunction of the universe, SciPost Phys. 12, 192 (2022), arXiv:2112.09028 [hep-th] .
- S. Kromin, N. Schwanemann, and S. Weinzierl, Amplitudes within causal loop-tree duality, Phys. Rev. D 106, 076006 (2022), arXiv:2208.01060 [hep-th] .
- J. Rios-Sanchez and G. Sborlini, Towards multiloop local renormalization within Causal Loop-Tree Duality, (2024), arXiv:2402.13995 [hep-th] .
- S. Ramírez-Uribe, A. E. Rentería-Olivo, and G. Rodrigo, Quantum querying based on multicontrolled Toffoli gates for causal Feynman loop configurations and directed acyclic graphs, (2024b), arXiv:2404.03544 [quant-ph] .
- R. J. Hernandez-Pinto, G. F. R. Sborlini, and G. Rodrigo, Towards gauge theories in four dimensions, JHEP 02, 044, arXiv:1506.04617 [hep-ph] .
- G. F. R. Sborlini, F. Driencourt-Mangin, and G. Rodrigo, Four-dimensional unsubtraction with massive particles, JHEP 10, 162, arXiv:1608.01584 [hep-ph] .
- R. M. Prisco and F. Tramontano, Dual subtractions, JHEP 06, 089, arXiv:2012.05012 [hep-ph] .
- F. Driencourt-Mangin, G. Rodrigo, and G. F. R. Sborlini, Universal dual amplitudes and asymptotic expansions for gg→H→𝑔𝑔𝐻gg\rightarrow Hitalic_g italic_g → italic_H and H→γγ→𝐻𝛾𝛾H\rightarrow\gamma\gammaitalic_H → italic_γ italic_γ in four dimensions, Eur. Phys. J. C 78, 231 (2018), arXiv:1702.07581 [hep-ph] .
- F. Driencourt-Mangin, Four-dimensional representation of scattering amplitudes and physical observables through the application of the Loop-Tree Duality theorem, Ph.D. thesis, U. Valencia (main) (2019), arXiv:1907.12450 [hep-ph] .
- Z. Kunszt and D. E. Soper, Calculation of jet cross-sections in hadron collisions at order alpha-s**3, Phys. Rev. D 46, 192 (1992).
- S. Frixione, Z. Kunszt, and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467, 399 (1996), arXiv:hep-ph/9512328 .
- S. Catani and M. H. Seymour, The Dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett. B 378, 287 (1996), arXiv:hep-ph/9602277 .
- S. Catani and M. H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485, 291 (1997), [Erratum: Nucl.Phys.B 510, 503–504 (1998)], arXiv:hep-ph/9605323 .
- S. Catani, D. de Florian, and M. Grazzini, Universality of nonleading logarithmic contributions in transverse momentum distributions, Nucl. Phys. B 596, 299 (2001), arXiv:hep-ph/0008184 .
- Z. Nagy and D. E. Soper, General subtraction method for numerical calculation of one loop QCD matrix elements, JHEP 09, 055, arXiv:hep-ph/0308127 .
- S. Weinzierl, Subtraction terms at NNLO, JHEP 03, 062, arXiv:hep-ph/0302180 .
- S. Frixione and M. Grazzini, Subtraction at NNLO, JHEP 06, 010, arXiv:hep-ph/0411399 .
- W. B. Kilgore, Subtraction terms for hadronic production processes at next-to-next-to-leading order, Phys. Rev. D 70, 031501 (2004), arXiv:hep-ph/0403128 .
- S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98, 222002 (2007), arXiv:hep-ph/0703012 .
- A. Gehrmann-De Ridder, T. Gehrmann, and E. W. N. Glover, Antenna subtraction at NNLO, JHEP 09, 056, arXiv:hep-ph/0505111 .
- A. Gehrmann-De Ridder, T. Gehrmann, and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real initial-initial configurations, JHEP 10, 047, arXiv:1207.5779 [hep-ph] .
- A. Daleo, T. Gehrmann, and D. Maitre, Antenna subtraction with hadronic initial states, JHEP 04, 016, arXiv:hep-ph/0612257 .
- G. Somogyi, Z. Trocsanyi, and V. Del Duca, A Subtraction scheme for computing QCD jet cross sections at NNLO: Regularization of doubly-real emissions, JHEP 01, 070, arXiv:hep-ph/0609042 .
- G. Somogyi and Z. Trocsanyi, A Subtraction scheme for computing QCD jet cross sections at NNLO: Regularization of real-virtual emission, JHEP 01, 052, arXiv:hep-ph/0609043 .
- G. Somogyi and Z. Trocsanyi, A Subtraction scheme for computing QCD jet cross sections at NNLO: Integrating the subtraction terms. I., JHEP 08, 042, arXiv:0807.0509 [hep-ph] .
- G. Somogyi, Subtraction with hadronic initial states at NLO: An NNLO-compatible scheme, JHEP 05, 016, arXiv:0903.1218 [hep-ph] .
- P. Bolzoni, G. Somogyi, and Z. Trocsanyi, A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the iterated singly-unresolved subtraction terms, JHEP 01, 059, arXiv:1011.1909 [hep-ph] .
- T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J. C 53, 501 (2008), arXiv:0709.2881 [hep-ph] .
- M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett. B 693, 259 (2010), arXiv:1005.0274 [hep-ph] .
- M. Czakon and D. Heymes, Four-dimensional formulation of the sector-improved residue subtraction scheme, Nucl. Phys. B 890, 152 (2014), arXiv:1408.2500 [hep-ph] .
- E. W. Nigel Glover and J. Pires, Antenna subtraction for gluon scattering at NNLO, JHEP 06, 096, arXiv:1003.2824 [hep-ph] .
- J. Currie, E. W. N. Glover, and S. Wells, Infrared Structure at NNLO Using Antenna Subtraction, JHEP 04, 066, arXiv:1301.4693 [hep-ph] .
- R. Boughezal, A. Gehrmann-De Ridder, and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real radiation for initial-initial configurations with two quark flavours, JHEP 02, 098, arXiv:1011.6631 [hep-ph] .
- R. Boughezal, K. Melnikov, and F. Petriello, A subtraction scheme for NNLO computations, Phys. Rev. D 85, 034025 (2012), arXiv:1111.7041 [hep-ph] .
- F. Caola, K. Melnikov, and R. Röntsch, Analytic results for color-singlet production at NNLO QCD with the nested soft-collinear subtraction scheme, Eur. Phys. J. C 79, 386 (2019), arXiv:1902.02081 [hep-ph] .
- L. Buonocore, M. Grazzini, and F. Tramontano, The qTsubscript𝑞𝑇q_{T}italic_q start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT subtraction method: electroweak corrections and power suppressed contributions, Eur. Phys. J. C 80, 254 (2020), arXiv:1911.10166 [hep-ph] .
- M. Delto and K. Melnikov, Integrated triple-collinear counter-terms for the nested soft-collinear subtraction scheme, JHEP 05, 148, arXiv:1901.05213 [hep-ph] .
- T. Engel, A. Signer, and Y. Ulrich, A subtraction scheme for massive QED, JHEP 01, 085, arXiv:1909.10244 [hep-ph] .
- W. J. Torres Bobadilla et al., May the four be with you: Novel IR-subtraction methods to tackle NNLO calculations, Eur. Phys. J. C 81, 250 (2021), arXiv:2012.02567 [hep-ph] .
- S. Becker, C. Reuschle, and S. Weinzierl, Numerical NLO QCD calculations, JHEP 12, 013, arXiv:1010.4187 [hep-ph] .
- R. Pittau and B. Webber, Direct numerical evaluation of multi-loop integrals without contour deformation, Eur. Phys. J. C 82, 55 (2022), arXiv:2110.12885 [hep-ph] .
- D. Kermanschah, Numerical integration of loop integrals through local cancellation of threshold singularities, JHEP 01, 151, arXiv:2110.06869 [hep-ph] .
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.