Papers
Topics
Authors
Recent
2000 character limit reached

Rewording Theoretical Predictions at Colliders with Vacuum Amplitudes

Published 8 Apr 2024 in hep-ph, hep-ex, and hep-th | (2404.05491v2)

Abstract: We propose multiloop vacuum amplitudes as the optimal building blocks for efficiently assembling theoretical predictions at high-energy colliders. This hypothesis is strongly supported by the manifestly causal properties of the loop-tree duality (LTD) representation of a vacuum amplitude. The vacuum amplitude, acting as a kernel, encodes all the final states contributing to a given scattering or decay process through residues in the on-shell energies of the internal propagators. It also naturally implements gauge invariance and the wave function renormalisation of the external legs. This methodological approach, dubbed LTD causal unitary, leads to a novel representation of differential cross sections and decay rates that is locally free of ultraviolet and infrared singularities at all orders in perturbation theory. Threshold singularities also match between different phase-space residues. Most notably, it allows us to conjecture for the first time the local functional form of initial-state collinear singularities. The fulfillment of all these properties provides a theoretical description of differential observables at colliders that is well defined in the four physical dimensions of the space-time.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. G. Aad et al. (ATLAS), Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716, 1 (2012), arXiv:1207.7214 [hep-ex] .
  2. S. Chatrchyan et al. (CMS), Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716, 30 (2012), arXiv:1207.7235 [hep-ex] .
  3. A. Abada et al. (FCC), FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1, Eur. Phys. J. C 79, 474 (2019).
  4. The International Linear Collider Technical Design Report - Volume 2: Physics,   (2013), arXiv:1306.6352 [hep-ph] .
  5. Physics and Detectors at CLIC: CLIC Conceptual Design Report 10.5170/CERN-2012-003 (2012), arXiv:1202.5940 [physics.ins-det] .
  6. M. Dong et al. (CEPC Study Group), CEPC Conceptual Design Report: Volume 2 - Physics & Detector,   (2018), arXiv:1811.10545 [hep-ex] .
  7. G. Heinrich, Collider Physics at the Precision Frontier, Phys. Rept. 922, 1 (2021), arXiv:2009.00516 [hep-ph] .
  8. 2020 Update of the European Strategy for Particle Physics (CERN Council, Geneva, 2020).
  9. J. N. Butler et al., Report of the 2021 U.S. Community Study on the Future of Particle Physics (Snowmass 2021) 10.2172/1922503 (2023).
  10. N. Arkani-Hamed and J. Trnka, The Amplituhedron, JHEP 10, 030, arXiv:1312.2007 [hep-th] .
  11. C. Cheung, I. Z. Rothstein, and M. P. Solon, From Scattering Amplitudes to Classical Potentials in the Post-Minkowskian Expansion, Phys. Rev. Lett. 121, 251101 (2018), arXiv:1808.02489 [hep-th] .
  12. C. G. Bollini and J. J. Giambiagi, Dimensional Renormalization: The Number of Dimensions as a Regularizing Parameter, Nuovo Cim. B 12, 20 (1972).
  13. G. ’t Hooft and M. J. G. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys. B 44, 189 (1972).
  14. W. J. Torres Bobadilla et al., May the four be with you: Novel IR-subtraction methods to tackle NNLO calculations, Eur. Phys. J. C 81, 250 (2021), arXiv:2012.02567 [hep-ph] .
  15. C. Gnendiger et al., To d𝑑{d}italic_d, or not to d𝑑{d}italic_d: recent developments and comparisons of regularization schemes, Eur. Phys. J. C 77, 471 (2017), arXiv:1705.01827 [hep-ph] .
  16. R. Pittau, A four-dimensional approach to quantum field theories, JHEP 11, 151, arXiv:1208.5457 [hep-ph] .
  17. C. Gnendiger and A. Signer, γ5subscript𝛾5\gamma_{5}italic_γ start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT in the four-dimensional helicity scheme, Phys. Rev. D 97, 096006 (2018), arXiv:1710.09231 [hep-ph] .
  18. E. T. Tomboulis, Causality and Unitarity via the Tree-Loop Duality Relation, JHEP 05, 148, arXiv:1701.07052 [hep-th] .
  19. F. Driencourt-Mangin, G. Rodrigo, and G. F. R. Sborlini, Universal dual amplitudes and asymptotic expansions for g⁢g→H→𝑔𝑔𝐻gg\rightarrow Hitalic_g italic_g → italic_H and H→γ⁢γ→𝐻𝛾𝛾H\rightarrow\gamma\gammaitalic_H → italic_γ italic_γ in four dimensions, Eur. Phys. J. C 78, 231 (2018), arXiv:1702.07581 [hep-ph] .
  20. J. L. Jurado, G. Rodrigo, and W. J. Torres Bobadilla, From Jacobi off-shell currents to integral relations, JHEP 12, 122, arXiv:1710.11010 [hep-ph] .
  21. J. Plenter and G. Rodrigo, Asymptotic expansions through the loop-tree duality, Eur. Phys. J. C 81, 320 (2021), arXiv:2005.02119 [hep-ph] .
  22. J. Plenter, Asymptotic Expansions Through the Loop-Tree Duality, Acta Phys. Polon. B 50, 1983 (2019).
  23. G. F. R. Sborlini, Geometrical approach to causality in multiloop amplitudes, Phys. Rev. D 104, 036014 (2021), arXiv:2102.05062 [hep-ph] .
  24. W. J. Torres Bobadilla, Loop-tree duality from vertices and edges, JHEP 04, 183, arXiv:2102.05048 [hep-ph] .
  25. W. J. T. Bobadilla, Lotty – The loop-tree duality automation, Eur. Phys. J. C 81, 514 (2021), arXiv:2103.09237 [hep-ph] .
  26. J. de Jesús Aguilera-Verdugo et al., A Stroll through the Loop-Tree Duality, Symmetry 13, 1029 (2021), arXiv:2104.14621 [hep-ph] .
  27. P. Benincasa and W. J. T. Bobadilla, Physical representations for scattering amplitudes and the wavefunction of the universe, SciPost Phys. 12, 192 (2022), arXiv:2112.09028 [hep-th] .
  28. S. Kromin, N. Schwanemann, and S. Weinzierl, Amplitudes within causal loop-tree duality, Phys. Rev. D 106, 076006 (2022), arXiv:2208.01060 [hep-th] .
  29. S. Ramírez-Uribe, A. E. Rentería-Olivo, and G. Rodrigo, Quantum querying based on multicontrolled Toffoli gates for causal Feynman loop configurations and directed acyclic graphs,  (2024a), arXiv:2404.03544 [quant-ph] .
  30. J. Rios-Sanchez and G. Sborlini, Towards multiloop local renormalization within Causal Loop-Tree Duality,  (2024), arXiv:2402.13995 [hep-th] .
  31. R. J. Hernandez-Pinto, G. F. R. Sborlini, and G. Rodrigo, Towards gauge theories in four dimensions, JHEP 02, 044, arXiv:1506.04617 [hep-ph] .
  32. G. F. R. Sborlini, F. Driencourt-Mangin, and G. Rodrigo, Four-dimensional unsubtraction with massive particles, JHEP 10, 162, arXiv:1608.01584 [hep-ph] .
  33. R. M. Prisco and F. Tramontano, Dual subtractions, JHEP 06, 089, arXiv:2012.05012 [hep-ph] .
  34. S. Agui-Salcedo and S. Melville, The cosmological tree theorem, JHEP 12, 076, arXiv:2308.00680 [hep-th] .
  35. G. Sterman and A. Venkata, Local infrared safety in time-ordered perturbation theory,   (2023), arXiv:2309.13023 [hep-ph] .
  36. S. He and E. Y. Yuan, One-loop Scattering Equations and Amplitudes from Forward Limit, Phys. Rev. D 92, 105004 (2015), arXiv:1508.06027 [hep-th] .
  37. L. D. Landau, On analytic properties of vertex parts in quantum field theory, Nucl. Phys. 13, 181 (1959).
  38. O. Steinmann, Über den Zusammenhang zwischen den Wightmanfunktionen und den retardierten Kommutatoren, Helv. Phys. Acta 33, 257 (1960a).
  39. O. Steinmann, Wightman-Funktionen und retardierten Kommutatoren, Helv. Phys. Acta 33, 247 (1960b).
  40. S. Becker, C. Reuschle, and S. Weinzierl, Numerical NLO QCD calculations, JHEP 12, 013, arXiv:1010.4187 [hep-ph] .
  41. A. M. Donati and R. Pittau, FDR, an easier way to NNLO calculations: a two-loop case study, Eur. Phys. J. C 74, 2864 (2014), arXiv:1311.3551 [hep-ph] .
  42. D. E. Soper, QCD calculations by numerical integration, Phys. Rev. Lett. 81, 2638 (1998), arXiv:hep-ph/9804454 .
  43. D. E. Soper, Techniques for QCD calculations by numerical integration, Phys. Rev. D 62, 014009 (2000), arXiv:hep-ph/9910292 .
  44. G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126, 298 (1977).
Citations (6)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 4 likes about this paper.