Curvature of quaternionic skew-Hermitian manifolds and bundle constructions (2404.05463v1)
Abstract: This articles is devoted to a description of the second-order differential geometry of torsion-free almost quaternionic skew-Hermitian manifolds, that is, of quaternionic skew-Hermitian manifolds $(M, Q, \omega)$. We provide a curvature characterization of such integrable geometric structures, based on the holonomy theory of symplectic connections and we study qualitative properties of the induced Ricci tensor. Then we proceed with bundle constructions over such a manifold $(M, Q, \omega)$. In particular, we prove the existence of almost hypercomplex skew-Hermitian structures on the Swann bundle over $M$ and investigate their integrability.
- Alekseevsky, D. V.; V. Cortés. “Classification of pseudo-Riemannian symmetric spaces of quaternionic Kähler type.” in “Lie groups and invariant theory.” Providence, RI: American Mathematical Society 213 (AMS). Translations. Series 2. Adv. Math. Sci. 56, 33–62, (2005).
- “Quaternionic Kähler metrics associated with special Kähler manifolds.” J. Geom. Phys., 92, 271–287, (2015).
- Alekseevsky, D. V.; S. Marchiafava. “Quaternionic structures on a manifold and subordinated structures.” Ann. Mat. Pura Appl. (IV), Vol CLXXI, 205-273, (1996).
- “Differential geometry of 𝖲𝖮∗(2n)superscript𝖲𝖮∗2𝑛\operatorname{\mathsf{SO}}^{\ast}(2n)sansserif_SO start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( 2 italic_n )-type structures.” Annali di Matematica Pura ed Applicata (1923 -), 60pp, (2022), (doi.org/10.1007/s10231-022-01212-y).
- “Differential geometry of 𝖲𝖮∗(2n)superscript𝖲𝖮∗2𝑛\operatorname{\mathsf{SO}}^{\ast}(2n)sansserif_SO start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( 2 italic_n )-type structures - Integrability.” Analysis and Mathematical Physics, Vol 12 (93), 1–52, (2022).
- Cortés, V.; K. Hasegawa. “The quaternionic/hypercomplex-correspondence.” Osaka J. Math., 58, 213–238, (2021).
- Gilmore, R. “Lie Groups, Lie Algebras, and Some of Their Applications.” A Willey-Interscience Publication, New-York, 1974.
- Gregorovič, J. “Geometric structures invariant to symmetries.” (Phd thesis), arXiv:1207.0193.
- Merkulov, S. A.; L. J. Schwachhöfer. “Classification of irreducible holonomies of torsion-free affine connections.” Ann. Math., 150, 77–49, (1999). Addendum: “Classification of irreducible holonomies of torsion-free affine connections.” Ann. Math., 150, 1177–1179, (1999).
- “Hypercomplex structures associated to quaternionic manifolds.” Differential Geom. Appl., 9, 273–292, (1998).
- Pontecorvo, M. “Complex structures on quaternionic manifolds.” Differ. Geom. Appl., 4, 163–177, (1994).
- Salamon, S. M. “Differential geometry of quaternionic manifolds.” Ann. Scient. Ec. Norm. Sup., 4esuperscript4𝑒4^{e}4 start_POSTSUPERSCRIPT italic_e end_POSTSUPERSCRIPT série, 19, 31–55, (1986).
- Schwachhöfer, J. “Connections with irreducible holonomy representations.” Advances in Mathematics 160 (1), 1–80, (2001).
- Swann, A. “Hyper-Kähler and quaternionic-Kähler geometry.” Math. Ann., 289, 421–450, (1991).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.