Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Complex network approach to the turbulent velocity gradient dynamics: High- and low-probability Lagrangian paths (2404.05453v1)

Published 8 Apr 2024 in physics.flu-dyn and nlin.CD

Abstract: Understanding the dynamics of the turbulent velocity gradient tensor (VGT) is essential to gain insights into the Navier-Stokes equations and improve small-scale turbulence modeling. However, characterizing the VGT dynamics conditional on all its relevant invariants in a continuous fashion is extremely difficult. In this paper, we represent the VGT Lagrangian dynamics using a network where each node represents a unique flow state. This approach enables us to discern how the VGT transitions from one state to another in a simplified fashion. Our analysis reveals intriguing features of the resulting network, such as the clustering of the commonly visited nodes where the eigenvalues of the VGT are real, in the proximity of the Vieillefosse tail. We then relate our complex network approach to the well-established VGT discretization based on the sign of its principal invariants, $Q$ and $R$, and its discriminant, $\Delta$. To this end, we separate the shortest paths on the network (geodesics) based on the $Q$-$R$ region to which their starting and arrival nodes belong. The distribution of the length of intra-region geodesics, with starting and arrival nodes belonging to the same $Q$-$R$ region, exhibits a distinct bimodality in two regions of the $Q$-$R$ plane, those in which the deviatoric part of the pressure Hessian introduces complexity to the VGT dynamics. Such bimodality is associated with infrequently visited nodes having to follow a long, low probability path to drastically change the state of the VGT compared to other flow states that can acquire the necessary characteristics without changing their sign for $Q$ or $R$. We complement the geodesics approach by examining random walks on the network, showing how the VGT non-normality and the associated production terms distinguish the shortest commuting paths between different $Q$-$R$ regions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. J. C. Vassilicos, Dissipation in turbulent flows, Annual Review of Fluid Mechanics 47, 95 (2015), https://doi.org/10.1146/annurev-fluid-010814-014637 .
  2. M. Carbone and A. D. Bragg, Is vortex stretching the main cause of the turbulent energy cascade?, Journal of Fluid Mechanics 883, R2 (2020).
  3. P. L. Johnson, Energy transfer from large to small scales in turbulence by multiscale nonlinear strain and vorticity interactions, Phys. Rev. Lett. 124, 104501 (2020).
  4. A. Vela-Martín, The energy cascade as the origin of intense events in small-scale turbulence, Journal of Fluid Mechanics 937, A13 (2022).
  5. C. Meneveau, Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows, Ann. Rev. Fluid Mech. 43, 219 (2011).
  6. U. Frisch, Turbulence (Cambridge University Press, Cambridge, 1995).
  7. K. Ohkitani, Study of the navier–stokes regularity problem with critical norms, Fluid Dyn. Res. 48, 021401 (2016).
  8. T. M. E. Theodore D. Drivas, Singularity formation in the incompressible Euler equation in finite and infinite time, EMS Surv. Math. Sci. 10 (2023).
  9. E. Miller, Finite-time blowup for a Navier-Stokes model equation for the self-amplification of strain, Analysis & PDE 16, 10.2140/apde.2023.16.997 (2023).
  10. P. Vieillefosse, Internal motion of a small element of fluid in an inviscid flow, Physica A 125, 150 (1984).
  11. A. Tsinober, L. Shtilman, and H. Vaisburd, A study of properties of vortex stretching and enstrophy generation in numerical and laboratory turbulence, Fluid Dyn. Res. 21, 477 (1997).
  12. B. J. Cantwell, On the behavior of velocity gradient tensor invariants in direct numerical simulations of turbulence, Physics of Fluids A: Fluid Dynamics 5, 2008 (1993).
  13. J. M. Chacin and B. J. Cantwell, Dynamics of a low Reynolds number turbulent boundary layer, J. Fluid Mech. 404, 87 (2000).
  14. P. L. Johnson and M. Wilczek, Multiscale velocity gradients in turbulence, Ann. Rev. Fluid Mech. 56, null (2024).
  15. K. Ohkitani and S. Kishiba, Nonlocal nature of vortex stretching in an inviscid fluid, Phys. Fluids 7, 411 (1995).
  16. P. Vieillefosse, Local interaction between vorticity and shear in a perfect incompressible fluid, J. Phys. France 43, 837 (1982).
  17. B. J. Cantwell, Exact solution of a restricted Euler equation for the velocity gradient tensor, Phys. Fluids A 4, 782 (1992).
  18. S. S. Girimaji and S. B. Pope, A diffusion model for velocity gradients in turbulence, Phys. Fluids 2, 242 (1990).
  19. M. Wilczek and C. Meneveau, Pressure Hessian and viscous contributions to velocity gradient statistics based on Gaussian random fields, J. Fluid Mech. 756, 191 (2014).
  20. P. L. Johnson and C. Meneveau, A closure for Lagrangian velocity gradient evolution in turbulence using recent-deformation mapping of initially Gaussian fields, J. Fluid Mech. 804, 387 (2016).
  21. D. Buaria and K. R. Sreenivasan, Forecasting small-scale dynamics of fluid turbulence using deep neural networks, Proc. Natl. Acad. Sci. U.S.A. 120 (2023).
  22. B. Sharma, R. Das, and S. S. Girimaji, Local vortex line topology and geometry in turbulence, Journal of Fluid Mechanics 924, A13 (2021).
  23. M. E. J. Newman, The structural and function of complex networks, SIAM Rev. 45, 167 (2003).
  24. X. Xiao, H. Chen, and P. Bogdan, Deciphering the generating rules and functionalities of complex networks, Scientific Rep. 11, 10.1038/s41598-021-02203-4 (2021).
  25. A. G. Nair and K. Taira, Network-theoretic approach to sparsified discrete vortex dynamics, J. Fluid Mech. 768, 549–571 (2015).
  26. K. Taira, A. G. Nair, and S. L. Brunton, Network structure of two-dimensional decaying isotropic turbulence, J. Fluid Mech. 795, 10.1017/jfm.2016.235 (2016).
  27. S. Scarsoglio, G. Iacobello, and L. Ridolfi, Complex networks unveiling spatial patterns in turbulence, Int. J. Bifurcation Chaos 26, 1650223 (2016), https://doi.org/10.1142/S0218127416502230 .
  28. S. B. Pope, A more general effective-viscosity hypothesis, Journal of Fluid Mechanics 72, 331 (1975).
  29. M. Itskov, Tensor Algebra and Tensor Analysis for Engineers (Springer International Publishing, Switzerland, 2015).
  30. L. A. Leppin and M. Wilczek, Capturing velocity gradients and particle rotation rates in turbulence, Phys. Rev. Lett. 125, 224501 (2020).
  31. M. Carbone and M. Wilczek, Asymptotic predictions on the velocity gradient statistics in low-reynolds number random flows: Onset of skewness, intermittency and alignments,   (2023), arXiv:2305.03454 .
  32. C. J. Keylock, The Schur decomposition of the velocity gradient tensor for turbulent flows, J. Fluid Mech. 848, 876 (2018).
  33. R. Betchov, An inequality concerning the production of vorticity in isotropic turbulence, J. Fluid Mech. 1, 497 (1956).
  34. K. K. Nomura and G. K. Post, The structure and dynamics of vorticity and rate of strain in incompressible homogeneous turbulence, J. Fluid Mech. 377, 65 (1998).
  35. M. Carbone and M. Wilczek, Only two Betchov homogeneity constraints exist for isotropic turbulence, Journal of Fluid Mechanics 948, R2 (2022).
  36. C. J. Keylock, S. N. Lane, and K. S. Richards, Quadrant/octant sequencing and the role of coherent structures in bed load sediment entrainment, J. Geophys. Res. 119, 264 (2014).
  37. P. Bonacich, Factoring and weighting approaches to status scores and clique identification, J. Math. Sociol. 2, 113 (1972).
  38. L. C. Freeman, A set of measures of centrality based upon betweenness, Sociometry 40, 35 (1977).
  39. S. P. Borgatti and M. G. Everett, A graph-theoretic perspective on centrality, Social Networks 28, 466 (2006).
  40. D. Boley, G. Ranjan, and Z.-L. Zhang, Commute times for a directed graph using an asymmetric Laplacian, Linear Algebra Appl. 435, 224 (2011).
  41. A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science 286, 509–512 (1999).
  42. C. J. Keylock, Turbulence at the Lee bound: maximally non-normal vortex filaments and the decay of a local dissipation rate, J. Fluid Mech. 881, 283 (2019).
  43. B. Lüthi, M. Holzner, and A. Tsinober, Expanding the Q-R space to three dimensions, J. Fluid Mech. 641, 497 (2009).
  44. J. Tom, M. Carbone, and A. D. Bragg, Exploring the turbulent velocity gradients at different scales from the perspective of the strain-rate eigenframe, Journal of Fluid Mechanics 910, A24 (2021).
  45. H. Xu, X. S. Cai, and C. Liu, Liutex (vortex) core definition and automatic identification for turbulence vortex structures, J. Hydrodynamics 31, 857 (2019).
  46. S. Laizet, J. Nedic, and J. C. Vassilicos, Influence of the spatial resolution on fine-scale features in DNS of turbulence generated by a single square grid, Int. J. Comp. Fluid Dyn. 29, 286 (2015).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: