Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 133 tok/s
Gemini 3.0 Pro 55 tok/s Pro
Gemini 2.5 Flash 164 tok/s Pro
Kimi K2 202 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Multi-head Attention-based Deep Multiple Instance Learning (2404.05362v1)

Published 8 Apr 2024 in cs.CV

Abstract: This paper introduces MAD-MIL, a Multi-head Attention-based Deep Multiple Instance Learning model, designed for weakly supervised Whole Slide Images (WSIs) classification in digital pathology. Inspired by the multi-head attention mechanism of the Transformer, MAD-MIL simplifies model complexity while achieving competitive results against advanced models like CLAM and DS-MIL. Evaluated on the MNIST-BAGS and public datasets, including TUPAC16, TCGA BRCA, TCGA LUNG, and TCGA KIDNEY, MAD-MIL consistently outperforms ABMIL. This demonstrates enhanced information diversity, interpretability, and efficiency in slide representation. The model's effectiveness, coupled with fewer trainable parameters and lower computational complexity makes it a promising solution for automated pathology workflows. Our code is available at https://github.com/tueimage/MAD-MIL.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.