2000 character limit reached
Power Series Composition in Near-Linear Time (2404.05177v2)
Published 8 Apr 2024 in cs.SC
Abstract: We present an algebraic algorithm that computes the composition of two power series in softly linear time complexity. The previous best algorithms are $\mathop{\mathrm O}(n{1+o(1)})$ by Kedlaya and Umans (FOCS 2008) and an $\mathop{\mathrm O}(n{1.43})$ algebraic algorithm by Neiger, Salvy, Schost and Villard (JACM 2023). Our algorithm builds upon the recent Graeffe iteration approach to manipulate rational power series introduced by Bostan and Mori (SOSA 2021).
- Daniel J. Bernstein “Composing power series over a finite ring in essentially linear time” In Journal of Symbolic Computation 26.3, 1998, pp. 339–341 DOI: 10.1006/jsco.1998.0216
- Daniel J. Bernstein “Removing redundancy in high-precision Newton iteration” Available from http://cr.yp.to/papers.html#fastnewton, 2004
- Alin Bostan, Grégoire Lecerf and Éric Schost “Tellegen’s principle into practice” In Proceedings of the 2003 international symposium on Symbolic and algebraic computation, 2003, pp. 37–44
- “Fast algorithms for computing isogenies between elliptic curves” In Mathematics of Computation 77.263, 2008, pp. 1755–1778 DOI: 10.1090/S0025-5718-08-02066-8
- “A simple and fast algorithm for computing the N𝑁Nitalic_N-th term of a linearly recurrent sequence” In Symposium on Simplicity in Algorithms (SOSA), 2021, pp. 118–132 SIAM
- Alin Bostan, Bruno Salvy and Éric Schost “Power series composition and change of basis” In Proceedings of the twenty-first international symposium on Symbolic and algebraic computation, 2008, pp. 269–276
- “A simple and fast algorithm for computing exponentials of power series” In Information Processing Letters 109.13, 2009, pp. 754–756 DOI: 10.1016/j.ipl.2009.03.012
- Richard P Brent “Multiple-precision zero-finding methods and the complexity of elementary function evaluation” In Analytic computational complexity Elsevier, 1976, pp. 151–176
- Richard P. Brent and Hsiang T. Kung “Fast algorithms for manipulating formal power series” In Journal of the ACM 25.4, 1978, pp. 581–595
- Peter Bürgisser, Michael Clausen and Mohammad A. Shokrollahi “Algebraic Complexity Theory” Springer, 2010
- David G. Cantor and Erich Kaltofen “On fast multiplication of polynomials over arbitrary algebras” In Acta Informatica 28.7, 1991, pp. 693–701 DOI: 10.1007/BF01178683
- James W. Cooley and John W. Tukey “An algorithm for the machine calculation of complex Fourier series” In Mathematics of Computation 19.90, 1965, pp. 297–301 URL: http://www.jstor.org/stable/2003354
- Charles M. Fiduccia “An efficient formula for linear recurrences” In SIAM Journal on Computing 14, 1985, pp. 106–112 DOI: 10.1137/0214007
- “Modern Computer Algebra” Cambridge University Press, 2013 DOI: 10.1017/CBO9781139856065
- Jürgen Gerhard “Modular algorithms for polynomial basis conversion and greatest factorial factorization” In Proceedings of the Seventh Rhine Workshop on Computer Algebra (RWCA’00), 2000, pp. 125–141
- David Harvey “Faster exponentials of power series” In arXiv preprint arXiv:0911.3110, 2009
- David Harvey “Faster algorithms for the square root and reciprocal of power series” In Mathematics of Computation 80.273, 2011, pp. 387–394 DOI: 10.1090/S0025-5718-2010-02392-0
- “Faster polynomial multiplication over finite fields using cyclotomic coefficient rings” Id/No 101404 In Journal of Complexity 54, 2019, pp. 18 DOI: 10.1016/j.jco.2019.03.004
- Joris Hoeven “Relax, but don’t be too lazy” In Journal of Symbolic Computation 34.6, 2002, pp. 479–542 DOI: 10.1006/jsco.2002.0562
- Joris Hoeven “Newton’s method and FFT trading” In Journal of Symbolic Computation 45.8, 2010, pp. 857–878 DOI: 10.1016/j.jsc.2010.03.005
- “Fast multivariate multi-point evaluation revisited” Id/No 101405 In Journal of Complexity 56, 2020, pp. 38 DOI: 10.1016/j.jco.2019.04.001
- Xiaohan Huang and Victor Y. Pan “Fast rectangular matrix multiplication and applications” In Journal of Complexity 14.2, 1998, pp. 257–299 DOI: https://doi.org/10.1006/jcom.1998.0476
- Kiran S. Kedlaya and Christopher Umans “Fast modular composition in any characteristic” In 2008 49th Annual IEEE Symposium on Foundations of Computer Science, 2008, pp. 146–155 DOI: 10.1109/FOCS.2008.13
- Kiran S. Kedlaya and Christopher Umans “Fast polynomial factorization and modular composition” In SIAM Journal on Computing 40.6, 2011, pp. 1767–1802 DOI: 10.1137/08073408X
- Donald E. Knuth “The Art of Computer Programming. Vol. 2: Seminumerical Algorithms.” Addison-Wesley, 1998
- Hsiang T. Kung “On computing reciprocals of power series” In Numerische Mathematik 22.5, 1974, pp. 341–348
- “Faster Modular Composition” In Journal of the ACM, 2023 DOI: 10.1145/3638349
- Carine Pivoteau, Bruno Salvy and Michèle Soria “Algorithms for combinatorial structures: well-founded systems and Newton iterations” In Journal of Combinatorial Theory. Series A 119.8, 2012, pp. 1711–1773 DOI: 10.1016/j.jcta.2012.05.007
- Arnold Schönhage “Variations on computing reciprocals of power series” In Information Processing Letters 74.1-2, 2000, pp. 41–46 DOI: 10.1016/S0020-0190(00)00044-2
- Arnold Schönhage, Andreas Grotefeld and Ekkehart Vetter “Fast algorithms. A multitape Turing machine implementation” B.I. Wissenschaftsverlag, 1994
- Igor S. Sergeev “Fast algorithms for elementary operations on complex power series” In Discrete Mathematics and Applications 20.1, 2010, pp. 25–60 DOI: 10.1515/DMA.2010.002
- Igor S. Sergeev “A note on the fast power series’ exponential” In arXiv preprint arXiv:1203.3883, 2012
- “New bounds for matrix multiplication: from alpha to omega” In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2024, pp. 3792–3835 DOI: 10.1137/1.9781611977912.134
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.