Papers
Topics
Authors
Recent
Search
2000 character limit reached

Optimizing Parameters of the LinDistFlow Power Flow Approximation for Distribution Systems

Published 8 Apr 2024 in eess.SY and cs.SY | (2404.05125v3)

Abstract: The DistFlow model accurately represents power flows in distribution systems, but the model's nonlinearities result in computational challenges for many applications. Accordingly, a linear approximation known as \mbox{LinDistFlow} (and its three-phase extension LinDist3Flow) is commonly employed. This paper introduces a parameter optimization algorithm for enhancing the accuracy of this approximation for both balanced single-phase equivalent and unbalanced three-phase distribution network models, with the goal of aligning the outputs more closely with those from the nonlinear DistFlow model. Using sensitivity information, our algorithm optimizes the LinDistFlow approximation's coefficient and bias parameters to minimize discrepancies in predictions of voltage magnitudes relative to the nonlinear DistFlow model. The parameter optimization algorithm employs the Truncated Newton Conjugate-Gradient (TNC) method to fine-tune coefficients and bias parameters during an offline training phase to improve the LinDistFlow approximation's accuracy. % in optimization applications. Numerical results underscore the algorithm's efficacy, showcasing accuracy improvements in $L_{1}$-norm and $L_{\infty}$-norm losses of up to $92\%$ and $88\%$, respectively, relative to the traditional LinDistFlow model. We also assess how the optimized parameters perform under changes in the network topology and demonstrate the optimized LinDistFlow approximation's efficacy in a hosting capacity optimization problem.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. B. Stott, “Review of load-flow calculation methods,” Proc. IEEE, vol. 62, no. 7, pp. 916–929, 1974.
  2. D. Bienstock and A. Verma, “Strong NP-hardness of AC power flows feasibility,” Oper. Res. Lett., vol. 47, no. 6, pp. 494–501, 2019.
  3. I. A. Hiskens and R. J. Davy, “Exploring the power flow solution space boundary,” IEEE Trans. Power Syst., vol. 16, no. 3, pp. 389–395, Aug. 2001.
  4. D. K. Molzahn, “Computing the feasible spaces of optimal power flow problems,” IEEE Trans. Power Syst., vol. 32, no. 6, pp. 4752–4763, November 2017.
  5. K. Lehmann, A. Grastien, and P. Van Hentenryck, “AC-feasibility on tree networks is NP-hard,” IEEE Trans. Power Syst., vol. 31, no. 1, pp. 798–801, January 2016.
  6. T. J. Overbye, X. Cheng, and Y. Sun, “A comparison of the AC and DC power flow models for LMP calculations,” in 37th Hawaii Int. Conf. Syst. Sci. (HICSS), 2004.
  7. S. Misra, L. A. Roald, M. Vuffray, and M. Chertkov, “Fast and robust determination of power system emergency control actions,” in IREP Symp. Bulk Power Syst. Dynamics Control–X, August 2017.
  8. L. A. Roald, D. Pozo, A. Papavasiliou, D. K. Molzahn, J. Kazempour, and A. Conejo, “Power Systems Optimization under Uncertainty: A Review of Methods and Applications,” Electric Power Syst. Res., vol. 214, no. 108725, January 2023, presented at the 22nd Power Syst. Comput. Conf. (PSCC 2022).
  9. C. Barrows, S. Blumsack, and P. Hines, “Correcting optimal transmission switching for AC power flows,” in 47th Hawaii Int. Conf. Syst. Sci. (HICSS), Jan. 2014, pp. 2374–2379.
  10. A. Castillo, C. Laird, C. A. Silva-Monroy, J.-P. Watson, and R. P. O’Neill, “The unit commitment problem with AC optimal power flow constraints,” IEEE Trans. Power Syst., vol. 31, no. 6, pp. 4853–4866, 2016.
  11. B. Austgen, E. Kutanoglu, J. J. Hasenbein, and S. Santoso, “Comparisons of two-stage models for flood mitigation of electrical substations,” arXiv:2302.12872, 2023.
  12. N. Rhodes, E. Haag, and L. Roald, “Long solution times or low solution quality: On trade-offs in choosing a power flow formulation for the optimal power shut-off problem,” arXiv:2310.13843, 2023.
  13. D. K. Molzahn and I. A. Hiskens, “A survey of relaxations and approximations of the power flow equations,” Found. Trends Electr. Energy Syst., vol. 4, no. 1-2, pp. 1–221, 2019.
  14. M. Baran and F. Wu, “Optimal capacitor placement on radial distribution systems,” IEEE Trans. Power Del., vol. 4, no. 1, pp. 725–734, Jan 1989.
  15. ——, “Optimal sizing of capacitors placed on a radial distribution system,” IEEE Trans. Power Del., vol. 4, no. 1, pp. 735–743, Jan 1989.
  16. ——, “Network reconfiguration in distribution systems for loss reduction and load balancing,” IEEE Trans. Power Del., vol. 4, no. 2, pp. 1401–1407, April 1989.
  17. L. Gan and S. H. Low, “Convex relaxations and linear approximation for optimal power flow in multiphase radial networks,” in 18th Power Syst. Comput. Conf. (PSCC), August 2014.
  18. V. Kekatos, L. Zhang, G. B. Giannakis, and R. Baldick, “Voltage regulation algorithms for multiphase power distribution grids,” IEEE Trans. Power Syst., vol. 31, no. 5, pp. 3913–3923, Sep 2016.
  19. B. A. Robbins and A. D. Domínguez-García, “Optimal reactive power dispatch for voltage regulation in unbalanced distribution systems,” IEEE Trans. Power Syst., vol. 31, no. 4, pp. 2903–2913, Jul 2016.
  20. Z. Yang, H. Zhong, A. Bose, T. Zheng, Q. Xia, and C. Kang, “A linearized OPF model with reactive power and voltage magnitude: A pathway to improve the MW-only DC OPF,” IEEE Trans. Power Syst., vol. 33, no. 2, pp. 1734–1745, 2017.
  21. E. Schweitzer, S. Saha, A. Scaglione, N. G. Johnson, and D. Arnold, “Lossy DistFlow formulation for single and multiphase radial feeders,” IEEE Trans. Power Syst., vol. 35, no. 3, pp. 1758–1768, May 2020.
  22. M. Marković and B.-M. Hodge, “Parameterized linear power flow for high fidelity voltage solutions in distribution systems,” IEEE Trans. Power Syst., vol. 38, no. 5, pp. 4391–4403, September 2023.
  23. K. Baker, A. Bernstein, E. Dall’Anese, and C. Zhao, “Network-cognizant voltage droop control for distribution grids,” IEEE Trans. Power Syst., vol. 33, no. 2, pp. 2098–2108, 2017.
  24. D. B. Arnold, M. Sankur, R. Dobbe, K. Brady, D. S. Callaway, and A. Von Meier, “Optimal dispatch of reactive power for voltage regulation and balancing in unbalanced distribution systems,” in IEEE Power Energy Soc. Gen. Meeting, 2016.
  25. R. Mieth and Y. Dvorkin, “Data-driven distributionally robust optimal power flow for distribution systems,” IEEE Control Syst. Lett., vol. 2, no. 3, pp. 363–368, 2018.
  26. R. K. Gupta and D. K. Molzahn, “Improving fairness in photovoltaic curtailments via daily topology reconfiguration for voltage control in power distribution networks,” arXiv:2403.07853, 2024.
  27. S. Bose, K. Chen, and Y. Zhang, “On LinDistFlow model congestion pricing: Bounding the changes in power tariffs,” arXiv:2305.00400, 2023.
  28. X. Chen, W. Wu, and B. Zhang, “Robust capacity assessment of distributed generation in unbalanced distribution networks incorporating anm techniques,” IEEE Trans. Sustain. Energy, vol. 9, no. 2, pp. 651–663, Apr 2018.
  29. S. Misra, D. K. Molzahn, and K. Dvijotham, “Optimal adaptive linearizations of the AC power flow equations,” in 20th Power Syst. Comput. Conf. (PSCC), June 2018.
  30. T. Mühlpfordt, V. Hagenmeyer, D. K. Molzahn, and S. Misra, “Optimal adaptive power flow linearizations: Expected error minimization using polynomial chaos expansion,” in IEEE Milan PowerTech, 2019.
  31. Y. Liu, N. Zhang, Y. Wang, J. Yang, and C. Kang, “Data-driven power flow linearization: A regression approach,” IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 2569–2580, May 2019.
  32. Y. Liu, Z. Li, and Y. Zhou, “Data-driven-aided linear three-phase power flow model for distribution power systems,” IEEE Trans. Power Syst., vol. 37, no. 4, pp. 2783–2795, Jul 2022.
  33. J. Chen and L. A. Roald, “Topology-adaptive piecewise linearization for three-phase power flow calculations in distribution grids,” in 55th North American Power Symp. (NAPS), 2023.
  34. P. Buason, S. Misra, and D. K. Molzahn, “A Sample-Based Approach for Computing Conservative Linear Power Flow Approximations,” Electric Power Syst. Res., vol. 212, p. 108579, 2022, presented at the 22nd Power Syst. Comput. Conf. (PSCC 2022).
  35. M. Jia and G. Hug, “Overview of data-driven power flow linearization,” in IEEE Belgrade PowerTech, 2023.
  36. M. Jia, G. Hug, N. Zhang, Z. Wang, and Y. Wang, “Tutorial on data-driven power flow linearization–Part I: Challenges and training algorithms,” preprint available at https://doi.org/10.3929/ethz-b-000606654, 2023.
  37. ——, “Tutorial on data-driven power flow linearization–Part II: Supportive techniques and experiments,” preprint available at https://doi.org/10.3929/ethz-b-000606656, 2023.
  38. B. Stott, J. Jardim, and O. Alsaç, “DC power flow revisited,” IEEE Trans. Power Syst., vol. 24, no. 3, pp. 1290–1300, 2009.
  39. K. Dvijotham and D. K. Molzahn, “Error bounds on the DC power flow approximations: A convex relaxation approach,” IEEE 55th Conf. Decis. Control (CDC), December 2016.
  40. B. Taheri and D. K. Molzahn, “Optimizing parameters of the DC power flow,” to appear in Electric Power Syst. Res., to be presented at the 23rd Power Syst. Comput. Conf. (PSCC), arXiv:2310.00447, 2024.
  41. S. H. Low, “Convex relaxation of optimal power flow–Part I: Formulations and equivalence,” IEEE Trans. Control Netw. Syst., vol. 1, no. 1, pp. 15–27, March 2014.
  42. S. G. Nash, “Newton-type minimization via the Lanczos method,” SIAM J. Numerical Analy., vol. 21, no. 4, pp. 770–788, 1984.
  43. S. Bolognani and S. Zampieri, “On the existence and linear approximation of the power flow solution in power distribution networks,” IEEE Trans. Power Syst., vol. 31, no. 1, pp. 163–172, 2015.
  44. R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education,” IEEE Trans. Power Syst., vol. 26, no. 1, pp. 12–19, 2011.
  45. C. Coffrin, R. Bent, K. Sundar, Y. Ng, and M. Lubin, “PowerModels.jl: An open-source framework for exploring power flow formulations,” in 20th Power Syst. Comput. Conf. (PSCC), 2018.
  46. M. Mahdavi, H. H. Alhelou, N. D. Hatziargyriou, and F. Jurado, “Reconfiguration of electric power distribution systems: Comprehensive review and classification,” IEEE Access, vol. 9, pp. 118 502–118 527, 2021.
  47. S. Zhan, J. Morren, W. van den Akker, A. van der Molen, N. G. Paterakis, and J. Slootweg, “Fairness-incorporated online feedback optimization for real-time distribution grid management,” IEEE Trans. Smart Grid, vol. 15, no. 2, pp. 1792–1806, 2024.
Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.