Papers
Topics
Authors
Recent
Search
2000 character limit reached

Mixed-Query Transformer: A Unified Image Segmentation Architecture

Published 6 Apr 2024 in cs.CV | (2404.04469v1)

Abstract: Existing unified image segmentation models either employ a unified architecture across multiple tasks but use separate weights tailored to each dataset, or apply a single set of weights to multiple datasets but are limited to a single task. In this paper, we introduce the Mixed-Query Transformer (MQ-Former), a unified architecture for multi-task and multi-dataset image segmentation using a single set of weights. To enable this, we propose a mixed query strategy, which can effectively and dynamically accommodate different types of objects without heuristic designs. In addition, the unified architecture allows us to use data augmentation with synthetic masks and captions to further improve model generalization. Experiments demonstrate that MQ-Former can not only effectively handle multiple segmentation datasets and tasks compared to specialized state-of-the-art models with competitive performance, but also generalize better to open-set segmentation tasks, evidenced by over 7 points higher performance than the prior art on the open-vocabulary SeginW benchmark.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.