Bipartite Fluctuations of Critical Fermi Surfaces (2404.04331v2)
Abstract: Fluctuations of conserved quantities within a subsystem are non-local observables that provide unique insights into quantum many-body systems. In this paper, we explore the behaviors of bipartite charge (and spin) fluctuations across interaction-driven "metal-insulator transitions" out of Landau Fermi liquids. The "charge insulators" include a class of non-Fermi-liquid states of fractionalized degrees of freedom, such as compressible composite Fermi liquids (for spinless electrons) and incompressible spin-liquid Mott insulators (for spin-$1/2$ electrons). We find that charge fluctuations $F$ exhibit distinct leading-order scalings across the phase transition: $F \sim L\log(L)$ in Landau Fermi liquids and $F \sim L$ in charge insulators, where $L$ is the linear size of the subsystem under bipartition. In the case of composite Fermi liquids (under certain conditions), we also identify a universal constant term $-f(\theta)|\sigma_{xy}|/(2\pi)$ arising when the subsystem geometry incorporates a sharp corner. Here, $f(\theta)$ represents a function of the corner angle, and $\sigma_{xy}$ denotes the Hall conductivity. At the critical point of each example, provided the transition is continuous, we find that the leading-order scaling $F \sim L$ is accompanied by a subleading universal corner contribution $-\log(L)f(\theta)C_{\rho}/2$ with the same angle dependence $f(\theta)$. The universal coefficient $C_{\rho}$ is linked to the predicted universal longitudinal (and Hall) resistivity jump $\Delta\rho_{xx}$ (and $\Delta\rho_{xy}$) at the critical point.
- N. Laflorencie, Quantum entanglement in condensed matter systems, Physics Reports 646, 1 (2016).
- X.-G. Wen, Colloquium: Zoo of quantum-topological phases of matter, Reviews of Modern Physics 89, 041004 (2017).
- I. Klich, G. Refael, and A. Silva, Measuring entanglement entropies in many-body systems, Physical Review A 74, 032306 (2006).
- I. Klich and L. Levitov, Quantum noise as an entanglement meter, Physical Review Letters 102, 100502 (2009).
- B. Hsu, E. Grosfeld, and E. Fradkin, Quantum noise and entanglement generated by a local quantum quench, Physical Review B 80, 235412 (2009).
- H. F. Song, S. Rachel, and K. Le Hur, General relation between entanglement and fluctuations in one dimension, Physical Review B 82, 012405 (2010).
- P. Calabrese, M. Mintchev, and E. Vicari, Exact relations between particle fluctuations and entanglement in fermi gases, Europhysics Letters 98, 20003 (2012).
- I. Frérot and T. Roscilde, Area law and its violation: A microscopic inspection into the structure of entanglement and fluctuations, Physical Review B 92, 115129 (2015).
- Z. Nussinov and G. Ortiz, A symmetry principle for topological quantum order, Annals of Physics 324, 977 (2009).
- J. McGreevy, Generalized symmetries in condensed matter, Annual Review of Condensed Matter Physics 14, 57 (2023).
- X.-C. Wu, C.-M. Jian, and C. Xu, Universal features of higher-form symmetries at phase transitions, SciPost Physics 11, 033 (2021).
- Y.-C. Wang, M. Cheng, and Z. Y. Meng, Scaling of the disorder operator at (2+1)d21𝑑(2+1)d( 2 + 1 ) italic_d U(1)U1\textrm{U}(1)U ( 1 ) quantum criticality, Physical Review B 104, L081109 (2021).
- B. Estienne, J.-M. Stéphan, and W. Witczak-Krempa, Cornering the universal shape of fluctuations, Nature Communications 13, 287 (2022).
- J. A. Hertz, Quantum critical phenomena, Physical Review B 14, 1165 (1976).
- A. J. Millis, Effect of a nonzero temperature on quantum critical points in itinerant fermion systems, Physical Review B 48, 7183 (1993).
- C. Nayak and F. Wilczek, Non-fermi liquid fixed point in 2+1212+12 + 1 dimensions, Nuclear Physics B 417, 359 (1994a).
- C. Nayak and F. Wilczek, Renormalization group approach to low temperature properties of a non-fermi liquid metal, Nuclear Physics B 430, 534 (1994b).
- J. Polchinski, Low-energy dynamics of the spinon-gauge system, Nuclear Physics B 422, 617 (1994).
- B. Altshuler, L. Ioffe, and A. Millis, Low-energy properties of fermions with singular interactions, Physical Review B 50, 14048 (1994).
- S.-S. Lee, Low-energy effective theory of fermi surface coupled with U(1)U1\textrm{U}(1)U ( 1 ) gauge field in 2+1212+12 + 1 dimensions, Physical Review B 80, 165102 (2009).
- M. A. Metlitski and S. Sachdev, Quantum phase transitions of metals in two spatial dimensions. i. Ising-nematic order, Physical Review B 82, 075127 (2010).
- D. Dalidovich and S.-S. Lee, Perturbative non-fermi liquids from dimensional regularization, Physical Review B 88, 245106 (2013).
- D. L. Maslov and A. V. Chubukov, Fermi liquid near Pomeranchuk quantum criticality, Physical Review B 81, 045110 (2010).
- J. Rech, C. Pépin, and A. V. Chubukov, Quantum critical behavior in itinerant electron systems: Eliashberg theory and instability of a ferromagnetic quantum critical point, Physical Review B 74, 195126 (2006).
- W. Ye, S.-S. Lee, and L. Zou, Ultraviolet-infrared mixing in marginal fermi liquids, Physical Review Letters 128, 106402 (2022).
- D. V. Else, R. Thorngren, and T. Senthil, Non-fermi liquids as ersatz fermi liquids: general constraints on compressible metals, Physical Review X 11, 021005 (2021).
- S. Florens and A. Georges, Slave-rotor mean-field theories of strongly correlated systems and the mott transition in finite dimensions, Physical Review B 70, 035114 (2004).
- S.-S. Lee and P. A. Lee, U(1) gauge theory of the hubbard model: Spin liquid states and possible application to κ−BEDTTTF2Cu2CN3𝜅subscriptBEDTTTF2subscriptCu2subscriptCN3\kappa-\mathrm{BEDT}\mathrm{TTF}_{2}\mathrm{Cu}_{2}\mathrm{CN}_{3}italic_κ - roman_BEDTTTF start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT roman_Cu start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT roman_CN start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT, Physical Review Letters 95, 036403 (2005).
- T. Senthil, Critical fermi surfaces and non-fermi liquid metals, Physical Review B 78, 035103 (2008a).
- T. Senthil, Theory of a continuous mott transition in two dimensions, Physical Review B 78, 045109 (2008b).
- See Ref. [94] for a discussion about the effects of disorder.
- M. Barkeshli and J. McGreevy, Continuous transitions between composite fermi liquid and landau fermi liquid: A route to fractionalized mott insulators, Physical Review B 86, 075136 (2012).
- X.-Y. Song, Y.-H. Zhang, and T. Senthil, Phase transitions out of quantum Hall states in Moiré TMD bilayers, arXiv preprint arXiv:2308.10903 (2023b).
- The existence of composite fermi liquids at 1/2 and 1/4 fillings in twisted MoTe2subscriptMoTe2\textrm{MoTe}_{2}MoTe start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is supported by Ref. [77, 78].
- M. M. Wolf, Violation of the entropic area law for fermions, Physical Review Letters 96, 010404 (2006).
- D. Gioev and I. Klich, Entanglement entropy of fermions in any dimension and the Widom conjecture, Physical Review Letters 96, 100503 (2006).
- W. Ding, A. Seidel, and K. Yang, Entanglement entropy of fermi liquids via multidimensional bosonization, Physical Review X 2, 011012 (2012).
- B. Swingle, Entanglement entropy and the fermi surface, Physical Review Letters 105, 050502 (2010).
- Private discussion with Prashant Kumar.
- We use a different notation Cρsubscript𝐶𝜌C_{\rho}italic_C start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT for critical fermi surfaces to distinguish it from CJsubscript𝐶𝐽C_{J}italic_C start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT used in CFTs.
- M. Barkeshli and J. McGreevy, Continuous transition between fractional quantum Hall and superfluid states, Physical Review B 89, 235116 (2014).
- S. Musser, T. Senthil, and D. Chowdhury, Theory of a continuous bandwidth-tuned Wigner-Mott transition, Physical Review B 106, 155145 (2022).
- B. I. Halperin, P. A. Lee, and N. Read, Theory of the half-filled landau level, Physical Review B 47, 7312 (1993).
- P. A. Lee and N. Nagaosa, Gauge theory of the normal state of high-Tcsubscript𝑇𝑐\mathit{T}_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT superconductors, Physical Review B 46, 5621 (1992).
- J. Frohlich, R. Gotschmann, and P. Marchetti, Bosonization of fermi systems in arbitrary dimension in terms of gauge forms, Journal of Physics A: Mathematical and General 28, 1169 (1995).
- J. Fröhlich, R. Götschmann, and P. Marchetti, The effective gauge field action of a system of non-relativistic electrons, Communications in mathematical physics 173, 417 (1995).
- D. T. Son, Is the composite fermion a Dirac particle?, Physical Review X 5, 031027 (2015).
- S. Girvin, A. MacDonald, and P. Platzman, Collective-excitation gap in the fractional quantum Hall effect, Physical Review Letters 54, 581 (1985).
- S. Girvin, A. MacDonald, and P. Platzman, Magneto-roton theory of collective excitations in the fractional quantum Hall effect, Physical Review B 33, 2481 (1986).
- N. Read, Lowest-landau-level theory of the quantum Hall effect: The fermi-liquid-like state of bosons at filling factor one, Physical Review B 58, 16262 (1998).
- In terms of space-time components, the response function has the form ΠCFTμν(k)=−σxx|k|(δμν−kμkν|k|2)−σxyεμνρkρsuperscriptsubscriptΠCFT𝜇𝜈𝑘subscript𝜎𝑥𝑥𝑘subscript𝛿𝜇𝜈subscript𝑘𝜇subscript𝑘𝜈superscript𝑘2subscript𝜎𝑥𝑦superscript𝜀𝜇𝜈𝜌subscript𝑘𝜌\Pi_{\textrm{CFT}}^{\mu\nu}(k)=-\sigma_{xx}|k|(\delta_{\mu\nu}-\frac{k_{\mu}k_% {\nu}}{|k|^{2}})-\sigma_{xy}\varepsilon^{\mu\nu\rho}k_{\rho}roman_Π start_POSTSUBSCRIPT CFT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT ( italic_k ) = - italic_σ start_POSTSUBSCRIPT italic_x italic_x end_POSTSUBSCRIPT | italic_k | ( italic_δ start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT - divide start_ARG italic_k start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT end_ARG start_ARG | italic_k | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) - italic_σ start_POSTSUBSCRIPT italic_x italic_y end_POSTSUBSCRIPT italic_ε start_POSTSUPERSCRIPT italic_μ italic_ν italic_ρ end_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT.
- L. Zou and D. Chowdhury, Deconfined metallic quantum criticality: A U(2)U2\textrm{U}(2)U ( 2 ) gauge-theoretic approach, Physical Review Research 2, 023344 (2020).
- E. Lieb, T. Schultz, and D. Mattis, Two soluble models of an antiferromagnetic chain, Annals of Physics 16, 407 (1961).
- M. B. Hastings, Lieb-Schultz-Mattis in higher dimensions, Physical Review B 69, 104431 (2004).
- R. V. Mishmash and O. I. Motrunich, Entanglement entropy of composite fermi liquid states on the lattice: In support of the Widom formula, Physical Review B 94, 081110 (2016).
- Y. Xu, X.-C. Wu, and C. Xu, Deconfined quantum critical point with nonlocality, Physical Review B 106, 155131 (2022b).
- D. F. Mross and T. Senthil, Decohering the fermi liquid: A dual approach to the mott transition, Physical Review B 84, 165126 (2011).
- Kang-Le Cai and Meng Cheng, to appear.
- D.-C. Lu, J. Wang, and Y.-Z. You, Definition and classification of fermi surface anomalies, Physical Review B 109, 045123 (2024).
- E. Fradkin, Field theories of condensed matter physics (Cambridge University Press, 2013).
- S. Kim, T. Senthil, and D. Chowdhury, Continuous mott transition in Moiré semiconductors: Role of long-wavelength inhomogeneities, Physical Review Letters 130, 066301 (2023).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.