Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Bipartite Fluctuations of Critical Fermi Surfaces (2404.04331v2)

Published 5 Apr 2024 in cond-mat.str-el, cond-mat.stat-mech, and hep-th

Abstract: Fluctuations of conserved quantities within a subsystem are non-local observables that provide unique insights into quantum many-body systems. In this paper, we explore the behaviors of bipartite charge (and spin) fluctuations across interaction-driven "metal-insulator transitions" out of Landau Fermi liquids. The "charge insulators" include a class of non-Fermi-liquid states of fractionalized degrees of freedom, such as compressible composite Fermi liquids (for spinless electrons) and incompressible spin-liquid Mott insulators (for spin-$1/2$ electrons). We find that charge fluctuations $F$ exhibit distinct leading-order scalings across the phase transition: $F \sim L\log(L)$ in Landau Fermi liquids and $F \sim L$ in charge insulators, where $L$ is the linear size of the subsystem under bipartition. In the case of composite Fermi liquids (under certain conditions), we also identify a universal constant term $-f(\theta)|\sigma_{xy}|/(2\pi)$ arising when the subsystem geometry incorporates a sharp corner. Here, $f(\theta)$ represents a function of the corner angle, and $\sigma_{xy}$ denotes the Hall conductivity. At the critical point of each example, provided the transition is continuous, we find that the leading-order scaling $F \sim L$ is accompanied by a subleading universal corner contribution $-\log(L)f(\theta)C_{\rho}/2$ with the same angle dependence $f(\theta)$. The universal coefficient $C_{\rho}$ is linked to the predicted universal longitudinal (and Hall) resistivity jump $\Delta\rho_{xx}$ (and $\Delta\rho_{xy}$) at the critical point.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. N. Laflorencie, Quantum entanglement in condensed matter systems, Physics Reports 646, 1 (2016).
  2. X.-G. Wen, Colloquium: Zoo of quantum-topological phases of matter, Reviews of Modern Physics 89, 041004 (2017).
  3. I. Klich, G. Refael, and A. Silva, Measuring entanglement entropies in many-body systems, Physical Review A 74, 032306 (2006).
  4. I. Klich and L. Levitov, Quantum noise as an entanglement meter, Physical Review Letters 102, 100502 (2009).
  5. B. Hsu, E. Grosfeld, and E. Fradkin, Quantum noise and entanglement generated by a local quantum quench, Physical Review B 80, 235412 (2009).
  6. H. F. Song, S. Rachel, and K. Le Hur, General relation between entanglement and fluctuations in one dimension, Physical Review B 82, 012405 (2010).
  7. P. Calabrese, M. Mintchev, and E. Vicari, Exact relations between particle fluctuations and entanglement in fermi gases, Europhysics Letters 98, 20003 (2012).
  8. I. Frérot and T. Roscilde, Area law and its violation: A microscopic inspection into the structure of entanglement and fluctuations, Physical Review B 92, 115129 (2015).
  9. Z. Nussinov and G. Ortiz, A symmetry principle for topological quantum order, Annals of Physics 324, 977 (2009).
  10. J. McGreevy, Generalized symmetries in condensed matter, Annual Review of Condensed Matter Physics 14, 57 (2023).
  11. X.-C. Wu, C.-M. Jian, and C. Xu, Universal features of higher-form symmetries at phase transitions, SciPost Physics 11, 033 (2021).
  12. Y.-C. Wang, M. Cheng, and Z. Y. Meng, Scaling of the disorder operator at (2+1)⁢d21𝑑(2+1)d( 2 + 1 ) italic_d U⁢(1)U1\textrm{U}(1)U ( 1 ) quantum criticality, Physical Review B 104, L081109 (2021).
  13. B. Estienne, J.-M. Stéphan, and W. Witczak-Krempa, Cornering the universal shape of fluctuations, Nature Communications 13, 287 (2022).
  14. J. A. Hertz, Quantum critical phenomena, Physical Review B 14, 1165 (1976).
  15. A. J. Millis, Effect of a nonzero temperature on quantum critical points in itinerant fermion systems, Physical Review B 48, 7183 (1993).
  16. C. Nayak and F. Wilczek, Non-fermi liquid fixed point in 2+1212+12 + 1 dimensions, Nuclear Physics B 417, 359 (1994a).
  17. C. Nayak and F. Wilczek, Renormalization group approach to low temperature properties of a non-fermi liquid metal, Nuclear Physics B 430, 534 (1994b).
  18. J. Polchinski, Low-energy dynamics of the spinon-gauge system, Nuclear Physics B 422, 617 (1994).
  19. B. Altshuler, L. Ioffe, and A. Millis, Low-energy properties of fermions with singular interactions, Physical Review B 50, 14048 (1994).
  20. S.-S. Lee, Low-energy effective theory of fermi surface coupled with U⁢(1)U1\textrm{U}(1)U ( 1 ) gauge field in 2+1212+12 + 1 dimensions, Physical Review B 80, 165102 (2009).
  21. M. A. Metlitski and S. Sachdev, Quantum phase transitions of metals in two spatial dimensions. i. Ising-nematic order, Physical Review B 82, 075127 (2010).
  22. D. Dalidovich and S.-S. Lee, Perturbative non-fermi liquids from dimensional regularization, Physical Review B 88, 245106 (2013).
  23. D. L. Maslov and A. V. Chubukov, Fermi liquid near Pomeranchuk quantum criticality, Physical Review B 81, 045110 (2010).
  24. J. Rech, C. Pépin, and A. V. Chubukov, Quantum critical behavior in itinerant electron systems: Eliashberg theory and instability of a ferromagnetic quantum critical point, Physical Review B 74, 195126 (2006).
  25. W. Ye, S.-S. Lee, and L. Zou, Ultraviolet-infrared mixing in marginal fermi liquids, Physical Review Letters 128, 106402 (2022).
  26. D. V. Else, R. Thorngren, and T. Senthil, Non-fermi liquids as ersatz fermi liquids: general constraints on compressible metals, Physical Review X 11, 021005 (2021).
  27. S. Florens and A. Georges, Slave-rotor mean-field theories of strongly correlated systems and the mott transition in finite dimensions, Physical Review B 70, 035114 (2004).
  28. S.-S. Lee and P. A. Lee, U(1) gauge theory of the hubbard model: Spin liquid states and possible application to κ−BEDTTTF2⁢Cu2⁢CN3𝜅subscriptBEDTTTF2subscriptCu2subscriptCN3\kappa-\mathrm{BEDT}\mathrm{TTF}_{2}\mathrm{Cu}_{2}\mathrm{CN}_{3}italic_κ - roman_BEDTTTF start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT roman_Cu start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT roman_CN start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT, Physical Review Letters 95, 036403 (2005).
  29. T. Senthil, Critical fermi surfaces and non-fermi liquid metals, Physical Review B 78, 035103 (2008a).
  30. T. Senthil, Theory of a continuous mott transition in two dimensions, Physical Review B 78, 045109 (2008b).
  31. See Ref. [94] for a discussion about the effects of disorder.
  32. M. Barkeshli and J. McGreevy, Continuous transitions between composite fermi liquid and landau fermi liquid: A route to fractionalized mott insulators, Physical Review B 86, 075136 (2012).
  33. X.-Y. Song, Y.-H. Zhang, and T. Senthil, Phase transitions out of quantum Hall states in Moiré TMD bilayers, arXiv preprint arXiv:2308.10903  (2023b).
  34. The existence of composite fermi liquids at 1/2 and 1/4 fillings in twisted MoTe2subscriptMoTe2\textrm{MoTe}_{2}MoTe start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is supported by Ref. [77, 78].
  35. M. M. Wolf, Violation of the entropic area law for fermions, Physical Review Letters 96, 010404 (2006).
  36. D. Gioev and I. Klich, Entanglement entropy of fermions in any dimension and the Widom conjecture, Physical Review Letters 96, 100503 (2006).
  37. W. Ding, A. Seidel, and K. Yang, Entanglement entropy of fermi liquids via multidimensional bosonization, Physical Review X 2, 011012 (2012).
  38. B. Swingle, Entanglement entropy and the fermi surface, Physical Review Letters 105, 050502 (2010).
  39. Private discussion with Prashant Kumar.
  40. We use a different notation Cρsubscript𝐶𝜌C_{\rho}italic_C start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT for critical fermi surfaces to distinguish it from CJsubscript𝐶𝐽C_{J}italic_C start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT used in CFTs.
  41. M. Barkeshli and J. McGreevy, Continuous transition between fractional quantum Hall and superfluid states, Physical Review B 89, 235116 (2014).
  42. S. Musser, T. Senthil, and D. Chowdhury, Theory of a continuous bandwidth-tuned Wigner-Mott transition, Physical Review B 106, 155145 (2022).
  43. B. I. Halperin, P. A. Lee, and N. Read, Theory of the half-filled landau level, Physical Review B 47, 7312 (1993).
  44. P. A. Lee and N. Nagaosa, Gauge theory of the normal state of high-Tcsubscript𝑇𝑐\mathit{T}_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT superconductors, Physical Review B 46, 5621 (1992).
  45. J. Frohlich, R. Gotschmann, and P. Marchetti, Bosonization of fermi systems in arbitrary dimension in terms of gauge forms, Journal of Physics A: Mathematical and General 28, 1169 (1995).
  46. J. Fröhlich, R. Götschmann, and P. Marchetti, The effective gauge field action of a system of non-relativistic electrons, Communications in mathematical physics 173, 417 (1995).
  47. D. T. Son, Is the composite fermion a Dirac particle?, Physical Review X 5, 031027 (2015).
  48. S. Girvin, A. MacDonald, and P. Platzman, Collective-excitation gap in the fractional quantum Hall effect, Physical Review Letters 54, 581 (1985).
  49. S. Girvin, A. MacDonald, and P. Platzman, Magneto-roton theory of collective excitations in the fractional quantum Hall effect, Physical Review B 33, 2481 (1986).
  50. N. Read, Lowest-landau-level theory of the quantum Hall effect: The fermi-liquid-like state of bosons at filling factor one, Physical Review B 58, 16262 (1998).
  51. In terms of space-time components, the response function has the form ΠCFTμ⁢ν⁢(k)=−σx⁢x⁢|k|⁢(δμ⁢ν−kμ⁢kν|k|2)−σx⁢y⁢εμ⁢ν⁢ρ⁢kρsuperscriptsubscriptΠCFT𝜇𝜈𝑘subscript𝜎𝑥𝑥𝑘subscript𝛿𝜇𝜈subscript𝑘𝜇subscript𝑘𝜈superscript𝑘2subscript𝜎𝑥𝑦superscript𝜀𝜇𝜈𝜌subscript𝑘𝜌\Pi_{\textrm{CFT}}^{\mu\nu}(k)=-\sigma_{xx}|k|(\delta_{\mu\nu}-\frac{k_{\mu}k_% {\nu}}{|k|^{2}})-\sigma_{xy}\varepsilon^{\mu\nu\rho}k_{\rho}roman_Π start_POSTSUBSCRIPT CFT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT ( italic_k ) = - italic_σ start_POSTSUBSCRIPT italic_x italic_x end_POSTSUBSCRIPT | italic_k | ( italic_δ start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT - divide start_ARG italic_k start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT end_ARG start_ARG | italic_k | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) - italic_σ start_POSTSUBSCRIPT italic_x italic_y end_POSTSUBSCRIPT italic_ε start_POSTSUPERSCRIPT italic_μ italic_ν italic_ρ end_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT.
  52. L. Zou and D. Chowdhury, Deconfined metallic quantum criticality: A U⁢(2)U2\textrm{U}(2)U ( 2 ) gauge-theoretic approach, Physical Review Research 2, 023344 (2020).
  53. E. Lieb, T. Schultz, and D. Mattis, Two soluble models of an antiferromagnetic chain, Annals of Physics 16, 407 (1961).
  54. M. B. Hastings, Lieb-Schultz-Mattis in higher dimensions, Physical Review B 69, 104431 (2004).
  55. R. V. Mishmash and O. I. Motrunich, Entanglement entropy of composite fermi liquid states on the lattice: In support of the Widom formula, Physical Review B 94, 081110 (2016).
  56. Y. Xu, X.-C. Wu, and C. Xu, Deconfined quantum critical point with nonlocality, Physical Review B 106, 155131 (2022b).
  57. D. F. Mross and T. Senthil, Decohering the fermi liquid: A dual approach to the mott transition, Physical Review B 84, 165126 (2011).
  58. Kang-Le Cai and Meng Cheng, to appear.
  59. D.-C. Lu, J. Wang, and Y.-Z. You, Definition and classification of fermi surface anomalies, Physical Review B 109, 045123 (2024).
  60. E. Fradkin, Field theories of condensed matter physics (Cambridge University Press, 2013).
  61. S. Kim, T. Senthil, and D. Chowdhury, Continuous mott transition in Moiré semiconductors: Role of long-wavelength inhomogeneities, Physical Review Letters 130, 066301 (2023).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.