Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Crosstalk-mitigated microelectronic control for optically-active spins (2404.04075v1)

Published 5 Apr 2024 in quant-ph and physics.app-ph

Abstract: To exploit the sub-nanometre dimensions of qubits for large-scale quantum information processing, corresponding control architectures require both energy and space efficiency, with the on-chip footprint of unit-cell electronics ideally micron-scale. However, the spin coherence of qubits in close packing is severely deteriorated by microwave crosstalk from neighbouring control sites. Here, we present a crosstalk-mitigation scheme using foundry microelectronics, to address solid-state spins at sub-100 um spacing without the need for qubit-detuning. Using nitrogen-vacancy centres in nanodiamonds as qubit prototypes, we first demonstrate 10 MHz Rabi oscillation at milliwatts of microwave power. Implementing the active cancellation, we then prove that the crosstalk field from neighbouring lattice sites can be reduced to undetectable levels. We finally extend the scheme to show increased qubit control, tripling the spin coherence under crosstalk mitigation. Compatible with integrated optics, our results present a step towards scalable control across quantum platforms using silicon microelectronics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. Zhong, H.-S., Wang, H., Deng, Y.-H., Chen, M.-C., Peng, L.-C., Luo, Y.-H., Qin, J., Wu, D., Ding, X., Hu, Y., et al.: Quantum computational advantage using photons. Science 370(6523), 1460–1463 (2020) Evered et al. [2023] Evered, S.J., Bluvstein, D., Kalinowski, M., Ebadi, S., Manovitz, T., Zhou, H., Li, S.H., Geim, A.A., Wang, T.T., Maskara, N., et al.: High-fidelity parallel entangling gates on a neutral-atom quantum computer. Nature 622(7982), 268–272 (2023) Kjaergaard et al. [2020] Kjaergaard, M., Schwartz, M.E., Braumüller, J., Krantz, P., Wang, J.I.-J., Gustavsson, S., Oliver, W.D.: Superconducting qubits: Current state of play. Annual Review of Condensed Matter Physics 11, 369–395 (2020) Gambetta [2020] Gambetta, J.: IBM’s roadmap for scaling quantum technology. IBM Research Blog (September 2020) (2020) Bravyi et al. [2022] Bravyi, S., Dial, O., Gambetta, J.M., Gil, D., Nazario, Z.: The future of quantum computing with superconducting qubits. Journal of Applied Physics 132(16) (2022) Kurizki et al. [2015] Kurizki, G., Bertet, P., Kubo, Y., Mølmer, K., Petrosyan, D., Rabl, P., Schmiedmayer, J.: Quantum technologies with hybrid systems. Proceedings of the National Academy of Sciences 112(13), 3866–3873 (2015) Ristè et al. [2020] Ristè, D., Fallek, S., Donovan, B., Ohki, T.A.: Microwave techniques for quantum computers: State-of-the-art control systems for quantum processors. IEEE Microwave Magazine 21(8), 60–71 (2020) Bardin et al. [2021] Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Evered, S.J., Bluvstein, D., Kalinowski, M., Ebadi, S., Manovitz, T., Zhou, H., Li, S.H., Geim, A.A., Wang, T.T., Maskara, N., et al.: High-fidelity parallel entangling gates on a neutral-atom quantum computer. Nature 622(7982), 268–272 (2023) Kjaergaard et al. [2020] Kjaergaard, M., Schwartz, M.E., Braumüller, J., Krantz, P., Wang, J.I.-J., Gustavsson, S., Oliver, W.D.: Superconducting qubits: Current state of play. Annual Review of Condensed Matter Physics 11, 369–395 (2020) Gambetta [2020] Gambetta, J.: IBM’s roadmap for scaling quantum technology. IBM Research Blog (September 2020) (2020) Bravyi et al. [2022] Bravyi, S., Dial, O., Gambetta, J.M., Gil, D., Nazario, Z.: The future of quantum computing with superconducting qubits. Journal of Applied Physics 132(16) (2022) Kurizki et al. [2015] Kurizki, G., Bertet, P., Kubo, Y., Mølmer, K., Petrosyan, D., Rabl, P., Schmiedmayer, J.: Quantum technologies with hybrid systems. Proceedings of the National Academy of Sciences 112(13), 3866–3873 (2015) Ristè et al. [2020] Ristè, D., Fallek, S., Donovan, B., Ohki, T.A.: Microwave techniques for quantum computers: State-of-the-art control systems for quantum processors. IEEE Microwave Magazine 21(8), 60–71 (2020) Bardin et al. [2021] Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kjaergaard, M., Schwartz, M.E., Braumüller, J., Krantz, P., Wang, J.I.-J., Gustavsson, S., Oliver, W.D.: Superconducting qubits: Current state of play. Annual Review of Condensed Matter Physics 11, 369–395 (2020) Gambetta [2020] Gambetta, J.: IBM’s roadmap for scaling quantum technology. IBM Research Blog (September 2020) (2020) Bravyi et al. [2022] Bravyi, S., Dial, O., Gambetta, J.M., Gil, D., Nazario, Z.: The future of quantum computing with superconducting qubits. Journal of Applied Physics 132(16) (2022) Kurizki et al. [2015] Kurizki, G., Bertet, P., Kubo, Y., Mølmer, K., Petrosyan, D., Rabl, P., Schmiedmayer, J.: Quantum technologies with hybrid systems. Proceedings of the National Academy of Sciences 112(13), 3866–3873 (2015) Ristè et al. [2020] Ristè, D., Fallek, S., Donovan, B., Ohki, T.A.: Microwave techniques for quantum computers: State-of-the-art control systems for quantum processors. IEEE Microwave Magazine 21(8), 60–71 (2020) Bardin et al. [2021] Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gambetta, J.: IBM’s roadmap for scaling quantum technology. IBM Research Blog (September 2020) (2020) Bravyi et al. [2022] Bravyi, S., Dial, O., Gambetta, J.M., Gil, D., Nazario, Z.: The future of quantum computing with superconducting qubits. Journal of Applied Physics 132(16) (2022) Kurizki et al. [2015] Kurizki, G., Bertet, P., Kubo, Y., Mølmer, K., Petrosyan, D., Rabl, P., Schmiedmayer, J.: Quantum technologies with hybrid systems. Proceedings of the National Academy of Sciences 112(13), 3866–3873 (2015) Ristè et al. [2020] Ristè, D., Fallek, S., Donovan, B., Ohki, T.A.: Microwave techniques for quantum computers: State-of-the-art control systems for quantum processors. IEEE Microwave Magazine 21(8), 60–71 (2020) Bardin et al. [2021] Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bravyi, S., Dial, O., Gambetta, J.M., Gil, D., Nazario, Z.: The future of quantum computing with superconducting qubits. Journal of Applied Physics 132(16) (2022) Kurizki et al. [2015] Kurizki, G., Bertet, P., Kubo, Y., Mølmer, K., Petrosyan, D., Rabl, P., Schmiedmayer, J.: Quantum technologies with hybrid systems. Proceedings of the National Academy of Sciences 112(13), 3866–3873 (2015) Ristè et al. [2020] Ristè, D., Fallek, S., Donovan, B., Ohki, T.A.: Microwave techniques for quantum computers: State-of-the-art control systems for quantum processors. IEEE Microwave Magazine 21(8), 60–71 (2020) Bardin et al. [2021] Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kurizki, G., Bertet, P., Kubo, Y., Mølmer, K., Petrosyan, D., Rabl, P., Schmiedmayer, J.: Quantum technologies with hybrid systems. Proceedings of the National Academy of Sciences 112(13), 3866–3873 (2015) Ristè et al. [2020] Ristè, D., Fallek, S., Donovan, B., Ohki, T.A.: Microwave techniques for quantum computers: State-of-the-art control systems for quantum processors. IEEE Microwave Magazine 21(8), 60–71 (2020) Bardin et al. [2021] Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Ristè, D., Fallek, S., Donovan, B., Ohki, T.A.: Microwave techniques for quantum computers: State-of-the-art control systems for quantum processors. IEEE Microwave Magazine 21(8), 60–71 (2020) Bardin et al. [2021] Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  2. Evered, S.J., Bluvstein, D., Kalinowski, M., Ebadi, S., Manovitz, T., Zhou, H., Li, S.H., Geim, A.A., Wang, T.T., Maskara, N., et al.: High-fidelity parallel entangling gates on a neutral-atom quantum computer. Nature 622(7982), 268–272 (2023) Kjaergaard et al. [2020] Kjaergaard, M., Schwartz, M.E., Braumüller, J., Krantz, P., Wang, J.I.-J., Gustavsson, S., Oliver, W.D.: Superconducting qubits: Current state of play. Annual Review of Condensed Matter Physics 11, 369–395 (2020) Gambetta [2020] Gambetta, J.: IBM’s roadmap for scaling quantum technology. IBM Research Blog (September 2020) (2020) Bravyi et al. [2022] Bravyi, S., Dial, O., Gambetta, J.M., Gil, D., Nazario, Z.: The future of quantum computing with superconducting qubits. Journal of Applied Physics 132(16) (2022) Kurizki et al. [2015] Kurizki, G., Bertet, P., Kubo, Y., Mølmer, K., Petrosyan, D., Rabl, P., Schmiedmayer, J.: Quantum technologies with hybrid systems. Proceedings of the National Academy of Sciences 112(13), 3866–3873 (2015) Ristè et al. [2020] Ristè, D., Fallek, S., Donovan, B., Ohki, T.A.: Microwave techniques for quantum computers: State-of-the-art control systems for quantum processors. IEEE Microwave Magazine 21(8), 60–71 (2020) Bardin et al. [2021] Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kjaergaard, M., Schwartz, M.E., Braumüller, J., Krantz, P., Wang, J.I.-J., Gustavsson, S., Oliver, W.D.: Superconducting qubits: Current state of play. Annual Review of Condensed Matter Physics 11, 369–395 (2020) Gambetta [2020] Gambetta, J.: IBM’s roadmap for scaling quantum technology. IBM Research Blog (September 2020) (2020) Bravyi et al. [2022] Bravyi, S., Dial, O., Gambetta, J.M., Gil, D., Nazario, Z.: The future of quantum computing with superconducting qubits. Journal of Applied Physics 132(16) (2022) Kurizki et al. [2015] Kurizki, G., Bertet, P., Kubo, Y., Mølmer, K., Petrosyan, D., Rabl, P., Schmiedmayer, J.: Quantum technologies with hybrid systems. Proceedings of the National Academy of Sciences 112(13), 3866–3873 (2015) Ristè et al. [2020] Ristè, D., Fallek, S., Donovan, B., Ohki, T.A.: Microwave techniques for quantum computers: State-of-the-art control systems for quantum processors. IEEE Microwave Magazine 21(8), 60–71 (2020) Bardin et al. [2021] Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gambetta, J.: IBM’s roadmap for scaling quantum technology. IBM Research Blog (September 2020) (2020) Bravyi et al. [2022] Bravyi, S., Dial, O., Gambetta, J.M., Gil, D., Nazario, Z.: The future of quantum computing with superconducting qubits. Journal of Applied Physics 132(16) (2022) Kurizki et al. [2015] Kurizki, G., Bertet, P., Kubo, Y., Mølmer, K., Petrosyan, D., Rabl, P., Schmiedmayer, J.: Quantum technologies with hybrid systems. Proceedings of the National Academy of Sciences 112(13), 3866–3873 (2015) Ristè et al. [2020] Ristè, D., Fallek, S., Donovan, B., Ohki, T.A.: Microwave techniques for quantum computers: State-of-the-art control systems for quantum processors. IEEE Microwave Magazine 21(8), 60–71 (2020) Bardin et al. [2021] Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bravyi, S., Dial, O., Gambetta, J.M., Gil, D., Nazario, Z.: The future of quantum computing with superconducting qubits. Journal of Applied Physics 132(16) (2022) Kurizki et al. [2015] Kurizki, G., Bertet, P., Kubo, Y., Mølmer, K., Petrosyan, D., Rabl, P., Schmiedmayer, J.: Quantum technologies with hybrid systems. Proceedings of the National Academy of Sciences 112(13), 3866–3873 (2015) Ristè et al. [2020] Ristè, D., Fallek, S., Donovan, B., Ohki, T.A.: Microwave techniques for quantum computers: State-of-the-art control systems for quantum processors. IEEE Microwave Magazine 21(8), 60–71 (2020) Bardin et al. [2021] Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kurizki, G., Bertet, P., Kubo, Y., Mølmer, K., Petrosyan, D., Rabl, P., Schmiedmayer, J.: Quantum technologies with hybrid systems. Proceedings of the National Academy of Sciences 112(13), 3866–3873 (2015) Ristè et al. [2020] Ristè, D., Fallek, S., Donovan, B., Ohki, T.A.: Microwave techniques for quantum computers: State-of-the-art control systems for quantum processors. IEEE Microwave Magazine 21(8), 60–71 (2020) Bardin et al. [2021] Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Ristè, D., Fallek, S., Donovan, B., Ohki, T.A.: Microwave techniques for quantum computers: State-of-the-art control systems for quantum processors. IEEE Microwave Magazine 21(8), 60–71 (2020) Bardin et al. [2021] Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  3. Kjaergaard, M., Schwartz, M.E., Braumüller, J., Krantz, P., Wang, J.I.-J., Gustavsson, S., Oliver, W.D.: Superconducting qubits: Current state of play. Annual Review of Condensed Matter Physics 11, 369–395 (2020) Gambetta [2020] Gambetta, J.: IBM’s roadmap for scaling quantum technology. IBM Research Blog (September 2020) (2020) Bravyi et al. [2022] Bravyi, S., Dial, O., Gambetta, J.M., Gil, D., Nazario, Z.: The future of quantum computing with superconducting qubits. Journal of Applied Physics 132(16) (2022) Kurizki et al. [2015] Kurizki, G., Bertet, P., Kubo, Y., Mølmer, K., Petrosyan, D., Rabl, P., Schmiedmayer, J.: Quantum technologies with hybrid systems. Proceedings of the National Academy of Sciences 112(13), 3866–3873 (2015) Ristè et al. [2020] Ristè, D., Fallek, S., Donovan, B., Ohki, T.A.: Microwave techniques for quantum computers: State-of-the-art control systems for quantum processors. IEEE Microwave Magazine 21(8), 60–71 (2020) Bardin et al. [2021] Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gambetta, J.: IBM’s roadmap for scaling quantum technology. IBM Research Blog (September 2020) (2020) Bravyi et al. [2022] Bravyi, S., Dial, O., Gambetta, J.M., Gil, D., Nazario, Z.: The future of quantum computing with superconducting qubits. Journal of Applied Physics 132(16) (2022) Kurizki et al. [2015] Kurizki, G., Bertet, P., Kubo, Y., Mølmer, K., Petrosyan, D., Rabl, P., Schmiedmayer, J.: Quantum technologies with hybrid systems. Proceedings of the National Academy of Sciences 112(13), 3866–3873 (2015) Ristè et al. [2020] Ristè, D., Fallek, S., Donovan, B., Ohki, T.A.: Microwave techniques for quantum computers: State-of-the-art control systems for quantum processors. IEEE Microwave Magazine 21(8), 60–71 (2020) Bardin et al. [2021] Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bravyi, S., Dial, O., Gambetta, J.M., Gil, D., Nazario, Z.: The future of quantum computing with superconducting qubits. Journal of Applied Physics 132(16) (2022) Kurizki et al. [2015] Kurizki, G., Bertet, P., Kubo, Y., Mølmer, K., Petrosyan, D., Rabl, P., Schmiedmayer, J.: Quantum technologies with hybrid systems. Proceedings of the National Academy of Sciences 112(13), 3866–3873 (2015) Ristè et al. [2020] Ristè, D., Fallek, S., Donovan, B., Ohki, T.A.: Microwave techniques for quantum computers: State-of-the-art control systems for quantum processors. IEEE Microwave Magazine 21(8), 60–71 (2020) Bardin et al. [2021] Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kurizki, G., Bertet, P., Kubo, Y., Mølmer, K., Petrosyan, D., Rabl, P., Schmiedmayer, J.: Quantum technologies with hybrid systems. Proceedings of the National Academy of Sciences 112(13), 3866–3873 (2015) Ristè et al. [2020] Ristè, D., Fallek, S., Donovan, B., Ohki, T.A.: Microwave techniques for quantum computers: State-of-the-art control systems for quantum processors. IEEE Microwave Magazine 21(8), 60–71 (2020) Bardin et al. [2021] Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Ristè, D., Fallek, S., Donovan, B., Ohki, T.A.: Microwave techniques for quantum computers: State-of-the-art control systems for quantum processors. IEEE Microwave Magazine 21(8), 60–71 (2020) Bardin et al. [2021] Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  4. Gambetta, J.: IBM’s roadmap for scaling quantum technology. IBM Research Blog (September 2020) (2020) Bravyi et al. [2022] Bravyi, S., Dial, O., Gambetta, J.M., Gil, D., Nazario, Z.: The future of quantum computing with superconducting qubits. Journal of Applied Physics 132(16) (2022) Kurizki et al. [2015] Kurizki, G., Bertet, P., Kubo, Y., Mølmer, K., Petrosyan, D., Rabl, P., Schmiedmayer, J.: Quantum technologies with hybrid systems. Proceedings of the National Academy of Sciences 112(13), 3866–3873 (2015) Ristè et al. [2020] Ristè, D., Fallek, S., Donovan, B., Ohki, T.A.: Microwave techniques for quantum computers: State-of-the-art control systems for quantum processors. IEEE Microwave Magazine 21(8), 60–71 (2020) Bardin et al. [2021] Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bravyi, S., Dial, O., Gambetta, J.M., Gil, D., Nazario, Z.: The future of quantum computing with superconducting qubits. Journal of Applied Physics 132(16) (2022) Kurizki et al. [2015] Kurizki, G., Bertet, P., Kubo, Y., Mølmer, K., Petrosyan, D., Rabl, P., Schmiedmayer, J.: Quantum technologies with hybrid systems. Proceedings of the National Academy of Sciences 112(13), 3866–3873 (2015) Ristè et al. [2020] Ristè, D., Fallek, S., Donovan, B., Ohki, T.A.: Microwave techniques for quantum computers: State-of-the-art control systems for quantum processors. IEEE Microwave Magazine 21(8), 60–71 (2020) Bardin et al. [2021] Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kurizki, G., Bertet, P., Kubo, Y., Mølmer, K., Petrosyan, D., Rabl, P., Schmiedmayer, J.: Quantum technologies with hybrid systems. Proceedings of the National Academy of Sciences 112(13), 3866–3873 (2015) Ristè et al. [2020] Ristè, D., Fallek, S., Donovan, B., Ohki, T.A.: Microwave techniques for quantum computers: State-of-the-art control systems for quantum processors. IEEE Microwave Magazine 21(8), 60–71 (2020) Bardin et al. [2021] Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Ristè, D., Fallek, S., Donovan, B., Ohki, T.A.: Microwave techniques for quantum computers: State-of-the-art control systems for quantum processors. IEEE Microwave Magazine 21(8), 60–71 (2020) Bardin et al. [2021] Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  5. Bravyi, S., Dial, O., Gambetta, J.M., Gil, D., Nazario, Z.: The future of quantum computing with superconducting qubits. Journal of Applied Physics 132(16) (2022) Kurizki et al. [2015] Kurizki, G., Bertet, P., Kubo, Y., Mølmer, K., Petrosyan, D., Rabl, P., Schmiedmayer, J.: Quantum technologies with hybrid systems. Proceedings of the National Academy of Sciences 112(13), 3866–3873 (2015) Ristè et al. [2020] Ristè, D., Fallek, S., Donovan, B., Ohki, T.A.: Microwave techniques for quantum computers: State-of-the-art control systems for quantum processors. IEEE Microwave Magazine 21(8), 60–71 (2020) Bardin et al. [2021] Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kurizki, G., Bertet, P., Kubo, Y., Mølmer, K., Petrosyan, D., Rabl, P., Schmiedmayer, J.: Quantum technologies with hybrid systems. Proceedings of the National Academy of Sciences 112(13), 3866–3873 (2015) Ristè et al. [2020] Ristè, D., Fallek, S., Donovan, B., Ohki, T.A.: Microwave techniques for quantum computers: State-of-the-art control systems for quantum processors. IEEE Microwave Magazine 21(8), 60–71 (2020) Bardin et al. [2021] Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Ristè, D., Fallek, S., Donovan, B., Ohki, T.A.: Microwave techniques for quantum computers: State-of-the-art control systems for quantum processors. IEEE Microwave Magazine 21(8), 60–71 (2020) Bardin et al. [2021] Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  6. Kurizki, G., Bertet, P., Kubo, Y., Mølmer, K., Petrosyan, D., Rabl, P., Schmiedmayer, J.: Quantum technologies with hybrid systems. Proceedings of the National Academy of Sciences 112(13), 3866–3873 (2015) Ristè et al. [2020] Ristè, D., Fallek, S., Donovan, B., Ohki, T.A.: Microwave techniques for quantum computers: State-of-the-art control systems for quantum processors. IEEE Microwave Magazine 21(8), 60–71 (2020) Bardin et al. [2021] Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Ristè, D., Fallek, S., Donovan, B., Ohki, T.A.: Microwave techniques for quantum computers: State-of-the-art control systems for quantum processors. IEEE Microwave Magazine 21(8), 60–71 (2020) Bardin et al. [2021] Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  7. Ristè, D., Fallek, S., Donovan, B., Ohki, T.A.: Microwave techniques for quantum computers: State-of-the-art control systems for quantum processors. IEEE Microwave Magazine 21(8), 60–71 (2020) Bardin et al. [2021] Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  8. Bardin, J.C., Slichter, D.H., Reilly, D.J.: Microwaves in quantum computing. IEEE Journal of Microwaves 1(1), 403–427 (2021) Brecht et al. [2016] Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  9. Brecht, T., Pfaff, W., Wang, C., Chu, Y., Frunzio, L., Devoret, M.H., Schoelkopf, R.J.: Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information 2(1), 1–4 (2016) Lekitsch et al. [2017] Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  10. Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Science Advances 3(2), 1601540 (2017) Spring et al. [2022] Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  11. Spring, P.A., Cao, S., Tsunoda, T., Campanaro, G., Fasciati, S., Wills, J., Bakr, M., Chidambaram, V., Shteynas, B., Carpenter, L., et al.: High coherence and low cross-talk in a tileable 3d integrated superconducting circuit architecture. Science Advances 8(16), 6698 (2022) Piltz et al. [2014] Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  12. Piltz, C., Sriarunothai, T., Varón, A., Wunderlich, C.: A trapped-ion-based quantum byte with 10- 5 next-neighbour cross-talk. Nature Communications 5(1), 4679 (2014) Wang et al. [2023] Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  13. Wang, H., Trusheim, M.E., Kim, L., Raniwala, H., Englund, D.R.: Field programmable spin arrays for scalable quantum repeaters. Nature Communications 14(1), 704 (2023) Clark et al. [2024] Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  14. Clark, G., Raniwala, H., Koppa, M., Chen, K., Leenheer, A., Zimmermann, M., Dong, M., Li, L., Wen, Y.H., Dominguez, D., et al.: Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Letters (2024) Pompili et al. [2021] Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  15. Pompili, M., Hermans, S.L., Baier, S., Beukers, H.K., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F., Tiggelman, M.J., Santos Martins, L., Dirkse, B., et al.: Realization of a multinode quantum network of remote solid-state qubits. Science 372(6539), 259–264 (2021) Abobeih et al. [2022] Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  16. Abobeih, M., Wang, Y., Randall, J., Loenen, S., Bradley, C., Markham, M., Twitchen, D., Terhal, B., Taminiau, T.: Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606(7916), 884–889 (2022) Bian et al. [2021] Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  17. Bian, K., Zheng, W., Zeng, X., Chen, X., Stöhr, R., Denisenko, A., Yang, S., Wrachtrup, J., Jiang, Y.: Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications 12(1), 2457 (2021) Smith et al. [2020] Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  18. Smith, J., Monroy-Ruz, J., Rarity, J.G., C Balram, K.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Applied Physics Letters 116(13) (2020) Knowles et al. [2014] Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  19. Knowles, H.S., Kara, D.M., Atatüre, M.: Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Materials 13(1), 21–25 (2014) Mariani et al. [2020] Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  20. Mariani, G., Nomoto, S., Kashiwaya, S., Nomura, S.: System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond. Scientific Reports 10(1), 4813 (2020) Wang et al. [2015] Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  21. Wang, P., Yuan, Z., Huang, P., Rong, X., Wang, M., Xu, X., Duan, C., Ju, C., Shi, F., Du, J.: High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications 6(1), 6631 (2015) Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  22. Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Physical Review B 84(19), 195204 (2011) Jakobi et al. [2017] Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  23. Jakobi, I., Neumann, P., Wang, Y., Dasari, D.B.R., El Hallak, F., Bashir, M.A., Markham, M., Edmonds, A., Twitchen, D., Wrachtrup, J.: Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotechnology 12(1), 67–72 (2017) Neumann et al. [2010] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  24. Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M., Twitchen, D., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6(4), 249–253 (2010) Sekiguchi et al. [2022] Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  25. Sekiguchi, Y., Matsushita, K., Kawasaki, Y., Kosaka, H.: Optically addressable universal holonomic quantum gates on diamond spins. Nature Photonics 16(9), 662–666 (2022) Arai et al. [2015] Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  26. Arai, K., Belthangady, C., Zhang, H., Bar-Gill, N., DeVience, S., Cappellaro, P., Yacoby, A., Walsworth, R.L.: Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10(10), 859–864 (2015) Bourgeois et al. [2015] Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  27. Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications 6(1), 8577 (2015) Gulka et al. [2021] Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  28. Gulka, M., Wirtitsch, D., Ivády, V., Vodnik, J., Hruby, J., Magchiels, G., Bourgeois, E., Gali, A., Trupke, M., Nesladek, M.: Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications 12(1), 4421 (2021) Kim et al. [2019] Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  29. Kim, D., Ibrahim, M.I., Foy, C., Trusheim, M.E., Han, R., Englund, D.R.: A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics 2(7), 284–289 (2019) Li et al. [2015] Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  30. Li, L., Chen, E.H., Zheng, J., Mouradian, S.L., Dolde, F., Schröder, T., Karaveli, S., Markham, M.L., Twitchen, D.J., Englund, D.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Letters 15(3), 1493–1497 (2015) Hadden et al. [2010] Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  31. Hadden, J., Harrison, J., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L., Patton, B., O’Brien, J.L., Rarity, J.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters 97(24) (2010) Weng et al. [2023] Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  32. Weng, H.-C., Monroy-Ruz, J., Matthews, J.C.F., Rarity, J.G., Balram, K.C., Smith, J.A.: Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 10(9), 3302–3309 (2023) Smith et al. [2021] Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  33. Smith, J.A., Clear, C., Balram, K.C., McCutcheon, D.P., Rarity, J.G.: Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: a high-efficiency source of indistinguishable photons at 200 K. Physical Review Applied 15(3), 034029 (2021) Uppu et al. [2020] Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  34. Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., et al.: Scalable integrated single-photon source. Science Advances 6(50), 8268 (2020) Bhaskar et al. [2017] Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  35. Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., et al.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Physical Review Letters 118(22), 223603 (2017) Castelletto and Boretti [2020] Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  36. Castelletto, S., Boretti, A.: Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2(2), 022001 (2020) Gaita-Ariño et al. [2019] Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  37. Gaita-Ariño, A., Luis, F., Hill, S., Coronado, E.: Molecular spins for quantum computation. Nature Chemistry 11(4), 301–309 (2019) Lawrie et al. [2023] Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  38. Lawrie, W., Rimbach-Russ, M., Riggelen, F.v., Hendrickx, N., Snoo, S.d., Sammak, A., Scappucci, G., Helsen, J., Veldhorst, M.: Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nature Communications 14(1), 3617 (2023) Mitchell et al. [2021] Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021) Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
  39. Mitchell, B.K., Naik, R.K., Morvan, A., Hashim, A., Kreikebaum, J.M., Marinelli, B., Lavrijsen, W., Nowrouzi, K., Santiago, D.I., Siddiqi, I.: Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Physical Review Letters 127(20), 200502 (2021)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 8 likes.