Papers
Topics
Authors
Recent
2000 character limit reached

High-Frequency Capacitive Sensing for Electrohydraulic Soft Actuators (2404.04071v2)

Published 5 Apr 2024 in cs.RO

Abstract: The need for compliant and proprioceptive actuators has grown more evident in pursuing more adaptable and versatile robotic systems. Hydraulically Amplified Self-Healing Electrostatic (HASEL) actuators offer distinctive advantages with their inherent softness and flexibility, making them promising candidates for various robotic tasks, including delicate interactions with humans and animals, biomimetic locomotion, prosthetics, and exoskeletons. This has resulted in a growing interest in the capacitive self-sensing capabilities of HASEL actuators to create miniature displacement estimation circuitry that does not require external sensors. However, achieving HASEL self-sensing for actuation frequencies above 1 Hz and with miniature high-voltage power supplies has remained limited. In this paper, we introduce the F-HASEL actuator, which adds an additional electrode pair used exclusively for capacitive sensing to a Peano-HASEL actuator. We demonstrate displacement estimation of the F-HASEL during high-frequency actuation up to 20 Hz and during external loading using miniaturized circuitry comprised of low-cost off-the-shelf components and a miniature high-voltage power supply. Finally, we propose a circuitry to estimate the displacement of multiple F-HASELs and demonstrate it in a wearable application to track joint rotations of a virtual reality user in real-time.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (11)
  1. N. Kellaris, V. G. Venkata, G. M. Smith, S. K. Mitchell, and C. Keplinger, “Peano-hasel actuators: Muscle-mimetic, electrohydraulic transducers that linearly contract on activation,” Sci. Robot.3, vol. eaar3276(2018), 2018. [Online]. Available: DOI:10.1126/scirobotics.aar3276
  2. P. Rothemund, N. Kellaris, S. K. Mitchell, E. Acome, and C. Keplinger, “Hasel artificial muscles for a new generation of lifelike robots—recent progress and future opportunities,” Advanced Materials, vol. 33, no. 19, nov 2020. [Online]. Available: http://dx.doi.org/10.1002/adma.202003375
  3. E. Acome, S. K. Mitchell, T. G. Morrissey, M. B. Emmett, C. Benjamin, M. King, M. Radakovitz, and C. Keplinger, “Hydraulically amplified self-healing electrostatic actuators with muscle-like performance,” Science, vol. 359, no. 6371, p. 61–65, jan 2018. [Online]. Available: http://dx.doi.org/10.1126/science.aao6139
  4. C. Schunk, L. Pearson, E. Acome, T. G. Morrissey, N. Correll, C. Keplinger, M. E. Rentschler, and J. S. Humbert, “System identification and closed-loop control of a hydraulically amplified self-healing electrostatic (hasel) actuator,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, oct 2018. [Online]. Available: http://dx.doi.org/10.1109/IROS.2018.8593797
  5. K. Ly, N. Kellaris, D. McMorris, B. K. Johnson, E. Acome, V. Sundaram, M. Naris, J. S. Humbert, M. E. Rentschler, C. Keplinger, et al., “Miniaturized circuitry for capacitive self-sensing and closed-loop control of soft electrostatic transducers,” Soft Robotics, vol. 8, no. 6, pp. 673–686, 2021.
  6. K. Jung, K. J. Kim, and H. R. Choi, “A self-sensing dielectric elastomer actuator,” Sensors and Actuators A: Physical, vol. 143, no. 2, p. 343–351, may 2008. [Online]. Available: http://dx.doi.org/10.1016/j.sna.2007.10.076
  7. T. A. Gisby, B. M. O’Brien, and I. A. Anderson, “Self sensing feedback for dielectric elastomer actuators,” Applied Physics Letters, vol. 102, no. 19, may 2013. [Online]. Available: http://dx.doi.org/10.1063/1.4805352
  8. S. Rosset, B. M. O’Brien, T. Gisby, D. Xu, H. R. Shea, and I. A. Anderson, “Self-sensing dielectric elastomer actuators in closed-loop operation,” Smart Materials and Structures, vol. 22, no. 10, p. 104018, sep 2013. [Online]. Available: http://dx.doi.org/10.1088/0964-1726/22/10/104018
  9. M. Landgraf, U. Zorell, T. Wetzel, S. Reitelshöfer, I. S. Yoo, and J. Franke, “Dielectric elastomer actuators as self-sensing devices: a new method of superimposing actuating and sensing signals,” in Electroactive Polymer Actuators and Devices (EAPAD) 2015, Y. Bar-Cohen, Ed.   SPIE, apr 2015. [Online]. Available: http://dx.doi.org/10.1117/12.2083572
  10. B. Karrer, “Integrated resistive sensor on peano-hasel actuator for high-speed monitoring,” Master thesis, Johannes Kepler Universität Linz, 2023.
  11. S. K. Mitchell, X. Wang, E. Acome, T. Martin, K. Ly, N. Kellaris, V. G. Venkata, and C. Keplinger, “An easy-to-implement toolkit to create versatile and high-performance hasel actuators for untethered soft robots,” Advanced Materials, 2019.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com