Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 124 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The statistical mechanics and machine learning of the $α$-Rényi ensemble (2404.04005v4)

Published 5 Apr 2024 in cond-mat.stat-mech

Abstract: We study the statistical physics of the classical Ising model in the so-called $\alpha$-R\'enyi ensemble, a finite-temperature thermal state approximation that minimizes a modified free energy based on the $\alpha$-R\'enyi entropy. We begin by characterizing its critical behavior in mean-field theory in different regimes of the R\'enyi index $\alpha$. Next, we re-introduce correlations and consider the model in one and two dimensions, presenting analytical arguments for the former and devising a Monte Carlo approach to the study of the latter. Remarkably, we find that while mean-field predicts a continuous phase transition below a threshold index value of $\alpha \sim 1.303$ and a first-order transition above it, the Monte Carlo results in two dimensions point to a continuous transition at all $\alpha$. We conclude by performing a variational minimization of the $\alpha$-R\'enyi free energy using a recurrent neural network (RNN) ansatz where we find that the RNN performs well in two dimensions when compared to the Monte Carlo simulations. Our work highlights the potential opportunities and limitations associated with the use of the $\alpha$-R\'enyi ensemble formalism in probing the thermodynamic equilibrium properties of classical and quantum systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. A. W. Sandvik and J. Kurkijärvi, Quantum Monte Carlo simulation method for spin systems, Phys. Rev. B 43, 5950 (1991).
  2. P. Henelius and A. W. Sandvik, Sign problem in Monte Carlo simulations of frustrated quantum spin systems, Phys. Rev. B 62, 1102 (2000).
  3. M. Troyer and U.-J. Wiese, Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations, Phys. Rev. Lett. 94, 170201 (2005).
  4. C. Wu and S.-C. Zhang, Sufficient condition for absence of the sign problem in the fermionic quantum Monte Carlo algorithm, Phys. Rev. B 71, 155115 (2005).
  5. Z.-X. Li, Y.-F. Jiang, and H. Yao, Solving the fermion sign problem in quantum Monte Carlo simulations by Majorana representation, Phys. Rev. B 91, 241117(R) (2015).
  6. S. Sugiura and A. Shimizu, Thermal pure quantum states at finite temperature, Phys. Rev. Lett. 108, 240401 (2012).
  7. S. Sugiura and A. Shimizu, Canonical thermal pure quantum state, Phys. Rev. Lett. 111, 010401 (2013).
  8. A. Iwaki, A. Shimizu, and C. Hotta, Thermal pure quantum matrix product states recovering a volume law entanglement, Phys. Rev. Research 3, L022015 (2021).
  9. Y. Nomura, N. Yoshioka, and F. Nori, Purifying deep boltzmann machines for thermal quantum states, Phys. Rev. Lett. 127, 060601 (2021).
  10. N. Irikura and H. Saito, Neural-network quantum states at finite temperature, Phys. Rev. Research 2, 013284 (2020).
  11. S. R. White, Minimally entangled typical quantum states at finite temperature, Phys. Rev. Lett. 102, 190601 (2009).
  12. E. M. Stoudenmire and S. R. White, Minimally entangled typical thermal state algorithms, New J. Phys. 12, 055026 (2010).
  13. J. Nys, Z. Denis, and G. Carleo, Real-time quantum dynamics of thermal states with neural thermofields (2023), arXiv:2309.07063 [quant-ph] .
  14. F. Vicentini, R. Rossi, and G. Carleo, Positive-definite parametrization of mixed quantum states with deep neural networks (2022), arXiv:2206.13488 [quant-ph] .
  15. A. G. Bashkirov, Maximum Rényi entropy principle for systems with power-law Hamiltonians, Phys. Rev. Lett. 93, 130601 (2004).
  16. S. Lu, G. Giudice, and J. I. Cirac, Variational neural and tensor network approximations of thermal states (2024), arXiv:2401.14243 [quant-ph] .
  17. G. Carleo and M. Troyer, Solving the quantum many-body problem with artificial neural networks, Science 355, 602–606 (2017).
  18. J. Carrasquilla and R. G. Melko, Machine learning phases of matter, Nature Physics 13, 431–434 (2017).
  19. M. Hibat-Allah, R. G. Melko, and J. Carrasquilla, Investigating topological order using recurrent neural networks, Phys. Rev. B 108, 075152 (2023).
  20. L. Onsager, Crystal Statistics. I. A two-dimensional model with an order-disorder transition, Phys. Rev. 65, 117 (1944).
  21. A. Rényi, On measures of entropy and information, in Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics (University of California Press, 1961) pp. 547––561.
  22. D. Arovas, Lecture Notes on Thermodynamics and Statistical Mechanics (CreateSpace Independent Publishing Platform, 2014).
  23. M. Kardar, Statistical Physics of Fields (Cambridge University Press, 2007) 1st ed.
  24. R. Peierls and M. Born, On Ising’s model of ferromagnetism, Mathematical Proceedings of the Cambridge Philosophical Society 32, 477 (1936).
  25. The asymptotic growth of n choose floor(n/2) (Stack Overflow 2014).
  26. M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in Statistical Physics (Clarendon Press, 1999) 1st ed.
  27. F. Becca and S. Sorella, Quantum Monte Carlo Approaches for Correlated systems (Cambridge University Press, 2017) 1st ed.
  28. R. Shankar, Quantum Field Theory and Condensed Matter: An Introduction (Cambridge University Press, 2017) 1st ed.
  29. N. Goldenfeld, Lectures on Phase Transitions and The Renormalization Group (Addison-Wesley, 1972).
  30. H. Nishimori and G. Ortiz, Elements of Phase Transitions and Critical Phenomena (Oxford University Press, 2011) 1st ed.
  31. M. E. J. Newman and G. T. Barkema, Monte Carlo study of the random-field Ising model, Phys. Rev. E 53, 393 (1996).
  32. H. Rieger and A. P. Young, Critical exponents of the three-dimensional random field Ising model, J. Phys. A 26, 5279 (1993).
  33. M. Hibat-Allah, R. G. Melko, and J. Carrasquilla, Supplementing recurrent neural network wave functions with symmetry and annealing to improve accuracy, in Machine Learning and the Physical Sciences Workshop (NeurIPS 2021).
  34. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT Press, 2016).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 51 likes.

Upgrade to Pro to view all of the tweets about this paper: