Papers
Topics
Authors
Recent
2000 character limit reached

Towards Safe Robot Use with Edged or Pointed Objects: A Surrogate Study Assembling a Human Hand Injury Protection Database (2404.04004v3)

Published 5 Apr 2024 in cs.RO

Abstract: The use of pointed or edged tools or objects is one of the most challenging aspects of today's application of physical human-robot interaction (pHRI). One reason for this is that the severity of harm caused by such edged or pointed impactors is less well studied than for blunt impactors. Consequently, the standards specify well-reasoned force and pressure thresholds for blunt impactors and advise avoiding any edges and corners in contacts. Nevertheless, pointed or edged impactor geometries cannot be completely ruled out in real pHRI applications. For example, to allow edged or pointed tools such as screwdrivers near human operators, the knowledge of injury severity needs to be extended so that robot integrators can perform well-reasoned, time-efficient risk assessments. In this paper, we provide the initial datasets on injury prevention for the human hand based on drop tests with surrogates for the human hand, namely pig claws and chicken drumsticks. We then demonstrate the ease and efficiency of robot use using the dataset for contact on two examples. Finally, our experiments provide a set of injuries that may also be expected for human subjects under certain robot mass-velocity constellations in collisions. To extend this work, testing on human samples and a collaborative effort from research institutes worldwide is needed to create a comprehensive human injury avoidance database for any pHRI scenario and thus for safe pHRI applications including edged and pointed geometries.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. S. Haddadin, S. Haddadin, A. Khoury, T. Rokahr, S. Parusel, R. Burgkart, A. Bicchi, and A. Albu-Schäffer, “On making robots understand safety: Embedding injury knowledge into control,” The International Journal of Robotics Research, vol. 31, no. 13, pp. 1578–1602, 2012.
  2. J. Lachner, F. Allmendinger, E. Hobert, N. Hogan, and S. Stramigioli, “Energy budgets for coordinate invariant robot control in physical human–robot interaction,” The International Journal of Robotics Research, vol. 40, no. 8-9, pp. 968–985, 2021.
  3. N. Villa, E. Mobedi, and A. Ajoudani, “A contact-adaptive control framework for co-manipulation tasks with application to collaborative screwing,” in 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 2022, pp. 1131–1137.
  4. S. Hjorth, E. Lamon, D. Chrysostomou, and A. Ajoudani, “Design of an energy-aware cartesian impedance controller for collaborative disassembly,” arXiv preprint arXiv:2302.03587, 2023.
  5. F. Tassi, F. Iodice, E. De Momi, and A. Ajoudani, “Sociable and ergonomic human-robot collaboration through action recognition and augmented hierarchical quadratic programming,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022, pp. 10 712–10 719.
  6. A. Casalino, F. Cividini, A. M. Zanchettin, L. Piroddi, and P. Rocco, “Human-robot collaborative assembly: a use-case application,” IFAC-PapersOnLine, vol. 51, no. 11, pp. 194–199, 2018, 16th IFAC Symposium on Information Control Problems in Manufacturing INCOM 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2405896318313818
  7. K. Karacan, D. Grover, H. Sadeghian, F. Wu, and S. Haddadin, “Tactile exploration using unified force-impedance control,” in 22nd IFAC World Congress, 2023.
  8. DIN EN ISO 12100:2011-03, Safety of machinery - General principles for design - Risk assessment and risk reduction (ISO 12100:2010); German version EN ISO 12100:2010.
  9. DIN ISO/TS 15066:2016-02, Robots and robotic devices –- Collaborative robots (ISO/TS 15066:2016).
  10. C. Fischer, M. Steiner, M. Neuhold, M. Papa, A. Markis, and S. Schlund, “An investigation of the measurement of transient contacts in human-robot interaction,” in International Conference on Robotics in Alpe-Adria Danube Region.   Springer, 2022, pp. 547–555.
  11. R. J. Kirschner, N. Mansfeld, S. Abdolshah, and S. Haddadin, “Iso/ts 15066: How different interpretations affect risk assessment,” 2022.
  12. R. Behrens and N. Elkmann, “Study on meaningful and verified thresholds for minimizing the consequences of human-robot collisions,” in 2014 IEEE International Conference on Robotics and Automation (ICRA), 2014, pp. 3378–3383.
  13. R. Behrens , G. Pliske , M. Umbreit , S. Piatek , F. Walcher , and N. Elkmann , “A statistical model to determine biomechanical limits for physically safe interactions with collaborative robots,” Frontiers in Robotics and AI, vol. 8, 2022. [Online]. Available: https://www.frontiersin.org/articles/10.3389/frobt.2021.667818
  14. Y. Yamada, Y. Hirasawa, S. Huang, and Y. Umetani, “Fail-safe human/robot contact in the safety space,” in Proceedings 5th IEEE International Workshop on Robot and Human Communication. RO-MAN’96 TSUKUBA, 1996, pp. 59–64.
  15. U. Asad, S. Rasheed, W. A. Lughmani, T. Kazim, A. Khalid, and J. Pannek, “Biomechanical modeling of human-robot accident scenarios: A computational assessment for heavy-payload-capacity robots,” Applied Sciences, vol. 13, no. 3, 2023.
  16. B. Hohendorff, C. Weidermann, P. Pollinger, K. J. Burkhart, and L. P. Müller, “Jamming of fingers: An experimental study to determine force and deflection in participants and human cadaver specimens for development of a new bionic test device for validation of power-operated motor vehicle side door windows,” Biomedizinische Technik, vol. 58, no. 1, p. 39 – 49, 2013.
  17. B. Povse, D. Koritnik, T. Bajd, and M. Munih, “Correlation between impact-energy density and pain intensity during robot-man collision,” in 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, 2010, pp. 179–183.
  18. B. Hohendorff, C. Weidermann, P. Pollinger, K. Burkhart, M. Konerding, K. Prommersberger, and P. Rommens, “Entrapment of adult fingers between window glass and seal entry of a motor vehicle side door: An experimental study for investigation of the force at the subjective pain threshold,” Journal of Biomechanics, vol. 44, no. 11, p. 2158 – 2161, 2011.
  19. D. Mewes and F. Mauser, “Safeguarding crushing points by limitation of forces,” International Journal of Occupational Safety and Ergonomics, vol. 9, no. 2, pp. 177–191, 2003, pMID: 12820907. [Online]. Available: https://doi.org/10.1080/10803548.2003.11076562
  20. R. Behrens, G. Pliske, S. Piatek, F. Walcher, and N. Elkmann, “A statistical model to predict the occurrence of blunt impact injuries on the human hand-arm system,” 2023.
  21. R. Kent, S. Stacey, and C. Parenteau, “Dynamic pinch tolerance of the phalanges and interphalangeal joints,” Traffic injury prevention, vol. 9, no. 1, pp. 83–88, 2008.
  22. A. Ndiaye, M. Chambost, and M. Chiron, “The fatal injuries of car drivers,” Forensic Science International, vol. 184, no. 1, pp. 21–27, 2009. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0379073808004581
  23. A. L. Haynes and H. R. Lissner, “Experimental head impact studies,” Proceedings: American Association for Automotive Medicine Annual Conference, vol. 5, pp. 158–170, 1961. [Online]. Available: http://dx.doi.org/
  24. D. Haid, O. Duncan, J. Hart, and L. Foster, “Free-fall drop test with interchangeable surfaces to recreate concussive ice hockey head impacts,” Sports Engineering, vol. 26, no. 1, pp. 1–11, 2023.
  25. R. Sugiura, T. Fujikawa, R. Nishikata, and T. Nishimoto, “Soft tissue bruise injury by blunt impact in human-robot interaction - difference of tolerance between chest and extremities,” in 2019 19th International Conference on Control, Automation and Systems (ICCAS), 2019, pp. 792–797.
  26. M. Hamad, A. Kurdas, S. Abdolshah, and S. Haddadin, “A robotics perspective on experimental injury biomechanics of human body upper extremities,” in 2021 IEEE International Conference on Intelligence and Safety for Robotics (ISR), 2021, pp. 316–320.
  27. ——, “Experimental injury biomechanics of human body upper extremities: Anatomy, injury severity classification, and impact testing setups,” in 2021 IEEE International Conference on Intelligence and Safety for Robotics (ISR), 2021, pp. 310–315.
  28. E DIN EN ISO 10218-1:2021-09, Robots and robotic devices - Safety requirements for industrial robots - Part 1: Robot systems and integration (prEN ISO 10218-1:2021).
  29. A. Micheau and D. Hoa, “Die Hand (MRT): Atlas der Anatomie - medizinische Bildgebung,” June 2015. [Online]. Available: https://doi.org/10.37019%2Fe-anatomy%2F83480.de
  30. J. Ankersen, A. E. Birkbeck, R. D. Thomson, and P. Vanezis, “Puncture resistance and tensile strength of skin simulants,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 213, no. 6, pp. 493–501, 1999.
  31. O. A. Shergold, N. A. Fleck, and D. Radford, “The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates,” International Journal of Impact Engineering, vol. 32, no. 9, pp. 1384–1402, 2006.
  32. N. M. Germscheid, G. M. Thornton, D. A. Hart, and K. A. Hildebrand, “A biomechanical assessment to evaluate breed differences in normal porcine medial collateral ligaments,” Journal of Biomechanics, vol. 44, no. 4, pp. 725–731, 2011.
  33. C. H. Oliveira, K. M. Dias, R. D. Bernardes, T. F. Diana, R. J. Rodrigueiro, A. A. Calderano, and L. F. Albino, “The effects of arginine supplementation through different ratios of arginine:lysine on performance, skin quality and creatine levels of broiler chickens fed diets reduced in protein content,” Poultry Science, vol. 101, no. 11, pp. 1–9, 2022.
  34. S. Bharathi, V. Indu, K. Lucy, S. Maya, A. Sreeranjini, V. Vasudevan, and C. Sunanda, “Histological studies on the oesophageal tonsils of broiler ducks,” Journal of Food and Animal Sciences, vol. 1, no. 1, pp. 53–56, oct 2020. [Online]. Available: http://jfas.vetinfo.in/articles/histological-studies-on-the-oesophageal-tonsils-of-broiler-ducks/
  35. A. Summerfield, F. Meurens, and M. E. Ricklin, “The immunology of the porcine skin and its value as a model for human skin,” Molecular Immunology, vol. 66, no. 1, pp. 14–21, 2015.
  36. P. Oltulu, B. Ince, N. Kökbudak, S. Findik, and F. Kiliç, “Measurement of epidermis, dermis, and total skin thicknesses from six different body regions with a new ethical histometric technique,” Turkish Journal of Plastic Surgery, vol. 26, no. 2, pp. 56–61, 2018.
  37. R. Gustilo and J. Anderson, “Prevention of infection in the treatment of one thousand and twenty-five open fractures of long bones: retrospective and prospective analyses,” The Journal of bone and joint surgery. American volume, vol. 58, no. 4, p. 453—458, June 1976. [Online]. Available: http://europepmc.org/abstract/MED/773941
  38. H.-J. Oestern and H. Tscherne, “Pathophysiology and Classification of Soft Tissue Injuries Associated with Fractures,” Fractures with Soft Tissue Injuries, no. 3, pp. 1–9, 1984.
  39. R. J. Kirschner, N. Mansfeld, G. G. Peña, S. Abdolshah, and S. Haddadin, “Notion on the correct use of the robot effective mass in the safety context and comments on iso/ts 15066,” in 2021 IEEE International Conference on Intelligence and Safety for Robotics (ISR), 2021, pp. 6–9.
  40. Franka Emika GmbH, “FRANKA RESEARCH 3 - Datasheet,” Tech. Rep., 2022.
  41. Hentschel System GmbH, “Präzisions-Messlichtschranke 203.10 für Messdistanzen bis 60mm,” https://hentschel-system.de/de/produkte/geschwindigkeit/praezisions-messlichtschranke-20310, Last Accessed: 08/21/23.
  42. Kistler Group, “Piezoelectric Load Cells,” https://kistler.cdn.celum.cloud/SAPCommerce_Download_original/003-556e.pdf, Last Accessed: 08/21/23.
  43. ——, “Laboratory charge amplifiers LabAmp with data acquisition, for dynamic and or quasi-static signals, up to 8 channels / LabAmp,” https://www.kistler.com/DE/de/cp/labor-ladungsverstaerker-labamp-mit-datenerfassung-labamp/P0000289, Last Accessed: 08/21/23.
  44. M. Hamad, A. Kurdas, N. Mansfeld, S. Abdolshah, and S. Haddadin, “Modularize-and-conquer: A generalized impact dynamics and safe precollision control framework for floating-base tree-like robots,” IEEE Transactions on Robotics, vol. 39, no. 4, pp. 3200–3221, 2023.
  45. M. Hamad, N. Mansfeld, S. Abdolshah, and S. Haddadin, “The role of robot payload in the safety map framework,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019, pp. 195–200.
  46. O. Khatib, “Inertial properties in robotic manipulation: An object-level framework,” The international journal of robotics research, vol. 14, no. 1, pp. 19–36, 1995.
  47. T. Fujikawa, K. Okai, Y. Yamada, N. Rajaei, and T. Nishimoto, “Development of in-vivo rabbit model of human finger skin injuries for determining safety criteria for human-robot contact,” in 2023 23rd International Conference on Control, Automation and Systems (ICCAS), 2023, pp. 1146–1151.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.