2000 character limit reached
    
  An introduction to mixed Tate motives (2404.03770v2)
    Published 4 Apr 2024 in math.AG, math.KT, and math.NT
  
  Abstract: Mixed Tate motives are central objects in the study of cohomology groups of algebraic varieties and their arithmetic invariants. They also play a crucial role in a wide variety of questions related to multiple zeta values and polylogarithms, algebraic K-theory, hyperbolic geometry, and particle physics among others. This survey article is an introduction to mixed Tate motives and their many facets. It was written for the proceedings of the Summer School on Motives and Arithmetic Groups held in Strasbourg in June 2022.
- Y. André. Une introduction aux motifs (motifs purs, motifs mixtes, périodes), volume 17 of Panoramas et Synthèses. Société Mathématique de France, Paris, 2004.
- K.Ā Aomoto. On the structure of integrals of power product of linear functions. Sci. Papers College Gen. Ed. Univ. Tokyo, 27(2):49ā61, 1977.
- Faisceaux pervers. In Analysis and topology on singular spaces, I (Luminy, 1981), volume 100 of AstĆ©risque, pages 5ā171. SociĆ©tĆ© MathĆ©matique de France, Paris, 2018.
- A.Ā A. Beilinson and P.Ā Deligne. InterprĆ©tation motivique de la conjecture de Zagier reliant polylogarithmes et rĆ©gulateurs. In Motives (Seattle, WA, 1991), volumeĀ 55 of Proc. Sympos. Pure Math., pages 97ā121. Amer. Math. Soc., Providence, RI, 1994.
- F.Ā Brown and C.Ā Dupont. Single-valued integration and double copy. Journal für die reine und angewandte Mathematik (Crelles Journal), 2021(775):145ā196, 2021.
- F.Ā Brown and C.Ā Dupont. Single-valued integration and superstring amplitudes in genus zero. Communications in Mathematical Physics, 382(2):815ā874, 2021.
- A.Ā A. Beilinson. Higher regulators and values of Lšæ{L}italic_L-functions. J. Soviet Math., 30(2):2036ā2070, 1985.
- On motives associated to graph polynomials. Comm. Math. Phys., 267(1):181ā225, 2006.
- J. I. Burgos Gil and J. FresÔn. Multiple zeta values: from numbers to motives. Clay Mathematics Proceedings, to appear.
- S.Ā Bloch. Algebraic cycles and higher Kš¾Kitalic_K-theory. Adv. in Math., 61(3):267ā304, 1986.
- Solution of the congruence subgroup problem for SLnā¢(nā„3)subscriptSLšš3{\mathrm{{S}L}}_{n}(n\geq 3)roman_SL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_n ā„ 3 ) and Sp2ā¢nā¢(nā„2)subscriptSp2šš2{\mathrm{{S}}}\mathrm{p}_{2n}(n\geq 2)roman_Sp start_POSTSUBSCRIPT 2 italic_n end_POSTSUBSCRIPT ( italic_n ā„ 2 ). Inst. Hautes Ćtudes Sci. Publ. Math., 33:59ā137, 1967.
- D.Ā Bar-Natan. On associators and the Grothendieck-Teichmuller group. I. Selecta Math. (N.S.), 4(2):183ā212, 1998.
- A.Ā Borel. Stable real cohomology of arithmetic groups. Ann. Sci. Ćcole Norm. Sup. (4), 7:235ā272, 1974.
- A.Ā Borel. Cohomologie de Sā¢LnšsubscriptšæšSL_{n}italic_S italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT et valeurs de fonctions zĆŖta aux points entiers. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 4(4):613ā636, 1977.
- F.Ā Brown. Mixed Tate motives over ā¤ā¤\mathbb{Z}blackboard_Z. Ann. of Math. (2), 175(2):949ā976, 2012.
- F.Ā Brown. Dedekind zeta motives for totally real number fields. Invent. Math., 194(2):257ā311, 2013.
- F.Ā Brown. Motivic periods and ā1ā{0,1,ā}superscriptā101\mathbb{P}^{1}\setminus\{0,1,\infty\}blackboard_P start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ā { 0 , 1 , ā }. In Proceedings of the International Congress of MathematiciansāSeoul 2014. Vol. II, pages 295ā318. Kyung Moon Sa, Seoul, 2014.
- F.Ā Brown. Single-valued motivic periods and multiple zeta values. Forum Math. Sigma, 2:e25, 2014.
- F.Ā Brown. Feynman amplitudes, coaction principle, and cosmic Galois group. Commun. Number Theory Phys., 11(3):453ā556, 2017.
- F.Ā Brown. Notes on motivic periods. Commun. Number Theory Phys., 11(3):557ā655, 2017.
- Projective geometry and Kš¾Kitalic_K-theory. Algebra i Analiz, 2(3):78ā130, 1990.
- K.-T. Chen. Iterated path integrals. Bull. Amer. Math. Soc., 83(5):831ā879, 1977.
- P.Ā Deligne. ThĆ©orie de Hodge. I. In Actes du CongrĆØs International des MathĆ©maticiens (Nice, 1970), Tome 1, pages 425ā430. Gauthier-Villars, Paris, 1971.
- P.Ā Deligne. ThĆ©orie de Hodge. II. Inst. Hautes Ćtudes Sci. Publ. Math., 40:5ā57, 1971.
- P.Ā Deligne. ThĆ©orie de Hodge. III. Inst. Hautes Ćtudes Sci. Publ. Math., 44:5ā77, 1974.
- P.Ā Deligne. Le groupe fondamental de la droite projective moins trois points. In Galois groups over šš{\bf Q}bold_Q (Berkeley, CA, 1987), volumeĀ 16 of Math. Sci. Res. Inst. Publ., pages 79ā297. Springer, New York, 1989.
- C. Dupont and J. FresÔn. A construction of the polylogarithm motive. arXiv preprint 2305.00789, 2023.
- P.Ā Deligne and A.Ā B. Goncharov. Groupes fondamentaux motiviques de Tate mixte. Ann. Sci. Ćcole Norm. Sup. (4), 38(1):1ā56, 2005.
- Regularized integrals and manifolds with log corners. arXiv preprint 2312.17720, 2023.
- G.Ā deĀ Rham. Sur lāanalysis situs des variĆ©tĆ©s Ć nšnitalic_n dimensions. Doctorat dāĆ©tat, 1931.
- C.Ā Dupont. Relative cohomology of bi-arrangements. Trans. Amer. Math. Soc., 369(11):8105ā8160, 2017.
- C.Ā Dupont. ProgrĆØs rĆ©cents sur la conjecture de Zagier et le programme de Goncharov [dāaprĆĀØs Goncharov, Rudenko, Gangl, ā¦]. In SĆ©minaire Bourbaki, 72ĆĀØme annĆĀ©e, 2019-2021, no. 1176, pages 294ā343. AstĆĀ©risque 430. SociĆ©tĆ© MathĆ©matique de France, Paris, 2021.
- C.Ā Dupont. Valeurs zĆĀŖta multiples. In P.Ā Harinck, A.Ā Plagne, and C.Ā Sabbah, editors, PĆ©riodes et transcendance, JournĆĀ©es mathĆĀ©matiques X-UPS 2019. Ćditions de lāĆcole polytechnique, 2024.
- A.Ā B. Goncharov. Polylogarithms and motivic Galois groups. In Motives (Seattle, WA, 1991), volumeĀ 55 of Proc. Sympos. Pure Math., pages 43ā96. Amer. Math. Soc., Providence, RI, 1994.
- A.Ā B. Goncharov. Geometry of configurations, polylogarithms, and motivic cohomology. Adv. Math., 114(2):197ā318, 1995.
- A.Ā B. Goncharov. Polylogarithms in arithmetic and geometry. In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), pages 374ā387. BirkhƤuser, Basel, 1995.
- A.Ā B. Goncharov. Volumes of hyperbolic manifolds and mixed Tate motives. J. Amer. Math. Soc., 12(2):569ā618, 1999.
- A.Ā B. Goncharov. Multiple polylogarithms and mixed Tate motives. arXiv preprint 0103059, 2001.
- A.Ā B. Goncharov. Galois symmetries of fundamental groupoids and noncommutative geometry. Duke Math. J., 128(2):209ā284, 2005.
- A.Ā B. Goncharov and D.Ā Rudenko. Motivic correlators, cluster varieties and Zagierās conjecture on ζFā¢(4)subscriptšš¹4\zeta_{F}(4)italic_ζ start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT ( 4 ). arXiv preprint 1803.08585, 2018.
- A.Ā Grothendieck. On the de Rham cohomology of algebraic varieties. Inst. Hautes Ćtudes Sci. Publ. Math., 29:95ā103, 1966.
- A.Ā Grothendieck. Standard conjectures on algebraic cycles. In Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), pages 193ā199. Oxford Univ. Press, London, 1969.
- R.Ā M. Hain. The geometry of the mixed Hodge structure on the fundamental group. In Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), volumeĀ 46 of Proc. Sympos. Pure Math., pages 247ā282. Amer. Math. Soc., Providence, RI, 1987.
- R.Ā M. Hain. Classical polylogarithms. In Motives (Seattle, WA, 1991), volumeĀ 55 of Proc. Sympos. Pure Math., pages 3ā42. Amer. Math. Soc., Providence, RI, 1994.
- M.Ā Hanamura. Mixed motives and algebraic cycles. I. Math. Res. Lett., 2(6):811ā821, 1995.
- A. Huber and S. Müller-Stach. Periods and Nori motives, volume 65 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer, Cham, 2017. With contributions by Benjamin Friedrich and Jonas von Wangenheim.
- W.Ā V.Ā D. Hodge. The topological invariants of algebraic varieties. In Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 1, pages 182ā192. Amer. Math. Soc., Providence, R.I., 1952.
- M.Ā E. Hoffman. The algebra of multiple harmonic series. J. Algebra, 194(2):477ā495, 1997.
- S.Ā L. Kleiman. The standard conjectures. In Motives (Seattle, WA, 1991), volumeĀ 55 of Proc. Sympos. Pure Math., pages 3ā20. 1994.
- M.Ā Kontsevich and D.Ā Zagier. Periods. In Mathematics unlimitedā2001 and beyond, pages 771ā808. Springer, Berlin, 2001.
- M.Ā Levine. Tate motives and the vanishing conjectures for algebraic Kš¾Kitalic_K-theory. In Algebraic Kš¾Kitalic_K-theory and algebraic topology (Lake Louise, AB, 1991), volume 407 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 167ā188. Kluwer Acad. Publ., Dordrecht, 1993.
- M.Ā Levine. Mixed motives, volumeĀ 57 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1998.
- Yu.Ā I. Manin. Correspondences, motifs and monoidal transformations. Mat. Sb. (N.S.), 77 (119):475ā507, 1968.
- H.Ā Matsumoto. Sur les sous-groupes arithmĆ©tiques des groupes semi-simples deployĆ©s. Ann. Sci. Ćc. Norm. SupĆ©r. (4), 2:1ā62, 1969.
- J.Ā W. Milnor. Introduction to algebraic K-theory, volumeĀ 72 of Ann. Math. Stud. Princeton University Press, Princeton, NJ, 1971.
- On the structure of Hopf algebras. Ann. of Math. (2), 81:211ā264, 1965.
- D.Ā Quillen. On the cohomology and Kš¾Kitalic_K-theory of the general linear groups over a finite field. Ann. of Math., 96(3):552ā586, 1972.
- D.Ā Quillen. Higher algebraic Kš¾Kitalic_K-theory. I. In Algebraic Kš¾Kitalic_K-theory, I: Higher Kš¾Kitalic_K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pages p. 85ā147. Lecture Notes in Math., Vol. 341, 1973.
- J.Ā Rosenberg. Algebraic K-theory and its applications, volume 147 of Graduate Texts in Mathematics. Springer New York, NY, 1994.
- D.Ā Rudenko. On the Goncharov depth conjecture and a formula for volumes of orthoschemes. J. Amer. Math. Soc., 36(4):1003ā1060, 2023.
- C.Ā SoulĆ©. OpĆ©rations en Kš¾{K}italic_K-thĆ©orie algĆ©brique. Canad. J. Math., 37(3):488ā550, 1985.
- V.Ā Voevodsky. Triangulated categories of motives over a field. In Cycles, transfers, and motivic homology theories, volume 143 of Ann. of Math. Stud., pages 188ā238. Princeton Univ. Press, Princeton, NJ, 2000.
- C.Ā Voisin. Hodge theory and complex algebraic geometry. I, volumeĀ 76 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2002. Translated from the French original by Leila Schneps.
- D.Ā Zagier. Polylogarithms, Dedekind zeta functions and the algebraic Kš¾Kitalic_K-theory of fields. In Arithmetic algebraic geometry (Texel, 1989), volumeĀ 89 of Progr. Math., pages 391ā430. BirkhƤuser Boston, Boston, MA, 1991.
- D.Ā Zagier and H.Ā Gangl. Classical and elliptic polylogarithms and special values of LšæLitalic_L-series. In The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), volume 548 of NATO Sci. Ser. C Math. Phys. Sci., pages 561ā615. Kluwer Acad. Publ., Dordrecht, 2000.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.