Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 142 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 420 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

An introduction to mixed Tate motives (2404.03770v2)

Published 4 Apr 2024 in math.AG, math.KT, and math.NT

Abstract: Mixed Tate motives are central objects in the study of cohomology groups of algebraic varieties and their arithmetic invariants. They also play a crucial role in a wide variety of questions related to multiple zeta values and polylogarithms, algebraic K-theory, hyperbolic geometry, and particle physics among others. This survey article is an introduction to mixed Tate motives and their many facets. It was written for the proceedings of the Summer School on Motives and Arithmetic Groups held in Strasbourg in June 2022.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (65)
  1. Y. André. Une introduction aux motifs (motifs purs, motifs mixtes, périodes), volume 17 of Panoramas et Synthèses. Société Mathématique de France, Paris, 2004.
  2. K.Ā Aomoto. On the structure of integrals of power product of linear functions. Sci. Papers College Gen. Ed. Univ. Tokyo, 27(2):49–61, 1977.
  3. Faisceaux pervers. In Analysis and topology on singular spaces, I (Luminy, 1981), volume 100 of AstĆ©risque, pages 5–171. SociĆ©tĆ© MathĆ©matique de France, Paris, 2018.
  4. A.Ā A. Beilinson and P.Ā Deligne. InterprĆ©tation motivique de la conjecture de Zagier reliant polylogarithmes et rĆ©gulateurs. In Motives (Seattle, WA, 1991), volumeĀ 55 of Proc. Sympos. Pure Math., pages 97–121. Amer. Math. Soc., Providence, RI, 1994.
  5. F.Ā Brown and C.Ā Dupont. Single-valued integration and double copy. Journal für die reine und angewandte Mathematik (Crelles Journal), 2021(775):145–196, 2021.
  6. F.Ā Brown and C.Ā Dupont. Single-valued integration and superstring amplitudes in genus zero. Communications in Mathematical Physics, 382(2):815–874, 2021.
  7. A.Ā A. Beilinson. Higher regulators and values of Lšæ{L}italic_L-functions. J. Soviet Math., 30(2):2036–2070, 1985.
  8. On motives associated to graph polynomials. Comm. Math. Phys., 267(1):181–225, 2006.
  9. J. I. Burgos Gil and J. FresÔn. Multiple zeta values: from numbers to motives. Clay Mathematics Proceedings, to appear.
  10. S.Ā Bloch. Algebraic cycles and higher Kš¾Kitalic_K-theory. Adv. in Math., 61(3):267–304, 1986.
  11. Solution of the congruence subgroup problem for SLn⁢(n≄3)subscriptSLš‘›š‘›3{\mathrm{{S}L}}_{n}(n\geq 3)roman_SL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_n ≄ 3 ) and Sp2⁢n⁢(n≄2)subscriptSp2š‘›š‘›2{\mathrm{{S}}}\mathrm{p}_{2n}(n\geq 2)roman_Sp start_POSTSUBSCRIPT 2 italic_n end_POSTSUBSCRIPT ( italic_n ≄ 2 ). Inst. Hautes Ɖtudes Sci. Publ. Math., 33:59–137, 1967.
  12. D.Ā Bar-Natan. On associators and the Grothendieck-Teichmuller group. I. Selecta Math. (N.S.), 4(2):183–212, 1998.
  13. A.Ā Borel. Stable real cohomology of arithmetic groups. Ann. Sci. Ɖcole Norm. Sup. (4), 7:235–272, 1974.
  14. A.Ā Borel. Cohomologie de S⁢Lnš‘†subscriptšæš‘›SL_{n}italic_S italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT et valeurs de fonctions zĆŖta aux points entiers. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 4(4):613–636, 1977.
  15. F.Ā Brown. Mixed Tate motives over ℤℤ\mathbb{Z}blackboard_Z. Ann. of Math. (2), 175(2):949–976, 2012.
  16. F.Ā Brown. Dedekind zeta motives for totally real number fields. Invent. Math., 194(2):257–311, 2013.
  17. F.Ā Brown. Motivic periods and ā„™1āˆ–{0,1,āˆž}superscriptā„™101\mathbb{P}^{1}\setminus\{0,1,\infty\}blackboard_P start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT āˆ– { 0 , 1 , āˆž }. In Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II, pages 295–318. Kyung Moon Sa, Seoul, 2014.
  18. F.Ā Brown. Single-valued motivic periods and multiple zeta values. Forum Math. Sigma, 2:e25, 2014.
  19. F.Ā Brown. Feynman amplitudes, coaction principle, and cosmic Galois group. Commun. Number Theory Phys., 11(3):453–556, 2017.
  20. F.Ā Brown. Notes on motivic periods. Commun. Number Theory Phys., 11(3):557–655, 2017.
  21. Projective geometry and Kš¾Kitalic_K-theory. Algebra i Analiz, 2(3):78–130, 1990.
  22. K.-T. Chen. Iterated path integrals. Bull. Amer. Math. Soc., 83(5):831–879, 1977.
  23. P.Ā Deligne. ThĆ©orie de Hodge. I. In Actes du CongrĆØs International des MathĆ©maticiens (Nice, 1970), Tome 1, pages 425–430. Gauthier-Villars, Paris, 1971.
  24. P.Ā Deligne. ThĆ©orie de Hodge. II. Inst. Hautes Ɖtudes Sci. Publ. Math., 40:5–57, 1971.
  25. P.Ā Deligne. ThĆ©orie de Hodge. III. Inst. Hautes Ɖtudes Sci. Publ. Math., 44:5–77, 1974.
  26. P.Ā Deligne. Le groupe fondamental de la droite projective moins trois points. In Galois groups over šš{\bf Q}bold_Q (Berkeley, CA, 1987), volumeĀ 16 of Math. Sci. Res. Inst. Publ., pages 79–297. Springer, New York, 1989.
  27. C. Dupont and J. FresÔn. A construction of the polylogarithm motive. arXiv preprint 2305.00789, 2023.
  28. P.Ā Deligne and A.Ā B. Goncharov. Groupes fondamentaux motiviques de Tate mixte. Ann. Sci. Ɖcole Norm. Sup. (4), 38(1):1–56, 2005.
  29. Regularized integrals and manifolds with log corners. arXiv preprint 2312.17720, 2023.
  30. G.Ā deĀ Rham. Sur l’analysis situs des variĆ©tĆ©s Ć  nš‘›nitalic_n dimensions. Doctorat d’état, 1931.
  31. C.Ā Dupont. Relative cohomology of bi-arrangements. Trans. Amer. Math. Soc., 369(11):8105–8160, 2017.
  32. C.Ā Dupont. ProgrĆØs rĆ©cents sur la conjecture de Zagier et le programme de Goncharov [d’après Goncharov, Rudenko, Gangl, …]. In SĆ©minaire Bourbaki, 72ème année, 2019-2021, no. 1176, pages 294–343. Astérisque 430. SociĆ©tĆ© MathĆ©matique de France, Paris, 2021.
  33. C.Ā Dupont. Valeurs zêta multiples. In P.Ā Harinck, A.Ā Plagne, and C.Ā Sabbah, editors, PĆ©riodes et transcendance, Journées mathématiques X-UPS 2019. Ɖditions de l’École polytechnique, 2024.
  34. A.Ā B. Goncharov. Polylogarithms and motivic Galois groups. In Motives (Seattle, WA, 1991), volumeĀ 55 of Proc. Sympos. Pure Math., pages 43–96. Amer. Math. Soc., Providence, RI, 1994.
  35. A.Ā B. Goncharov. Geometry of configurations, polylogarithms, and motivic cohomology. Adv. Math., 114(2):197–318, 1995.
  36. A.Ā B. Goncharov. Polylogarithms in arithmetic and geometry. In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), pages 374–387. BirkhƤuser, Basel, 1995.
  37. A.Ā B. Goncharov. Volumes of hyperbolic manifolds and mixed Tate motives. J. Amer. Math. Soc., 12(2):569–618, 1999.
  38. A.Ā B. Goncharov. Multiple polylogarithms and mixed Tate motives. arXiv preprint 0103059, 2001.
  39. A.Ā B. Goncharov. Galois symmetries of fundamental groupoids and noncommutative geometry. Duke Math. J., 128(2):209–284, 2005.
  40. A.Ā B. Goncharov and D.Ā Rudenko. Motivic correlators, cluster varieties and Zagier’s conjecture on ζF⁢(4)subscriptšœš¹4\zeta_{F}(4)italic_ζ start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT ( 4 ). arXiv preprint 1803.08585, 2018.
  41. A.Ā Grothendieck. On the de Rham cohomology of algebraic varieties. Inst. Hautes Ɖtudes Sci. Publ. Math., 29:95–103, 1966.
  42. A.Ā Grothendieck. Standard conjectures on algebraic cycles. In Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), pages 193–199. Oxford Univ. Press, London, 1969.
  43. R.Ā M. Hain. The geometry of the mixed Hodge structure on the fundamental group. In Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), volumeĀ 46 of Proc. Sympos. Pure Math., pages 247–282. Amer. Math. Soc., Providence, RI, 1987.
  44. R.Ā M. Hain. Classical polylogarithms. In Motives (Seattle, WA, 1991), volumeĀ 55 of Proc. Sympos. Pure Math., pages 3–42. Amer. Math. Soc., Providence, RI, 1994.
  45. M.Ā Hanamura. Mixed motives and algebraic cycles. I. Math. Res. Lett., 2(6):811–821, 1995.
  46. A. Huber and S. Müller-Stach. Periods and Nori motives, volume 65 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer, Cham, 2017. With contributions by Benjamin Friedrich and Jonas von Wangenheim.
  47. W.Ā V.Ā D. Hodge. The topological invariants of algebraic varieties. In Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 1, pages 182–192. Amer. Math. Soc., Providence, R.I., 1952.
  48. M.Ā E. Hoffman. The algebra of multiple harmonic series. J. Algebra, 194(2):477–495, 1997.
  49. S.Ā L. Kleiman. The standard conjectures. In Motives (Seattle, WA, 1991), volumeĀ 55 of Proc. Sympos. Pure Math., pages 3–20. 1994.
  50. M.Ā Kontsevich and D.Ā Zagier. Periods. In Mathematics unlimited—2001 and beyond, pages 771–808. Springer, Berlin, 2001.
  51. M.Ā Levine. Tate motives and the vanishing conjectures for algebraic Kš¾Kitalic_K-theory. In Algebraic Kš¾Kitalic_K-theory and algebraic topology (Lake Louise, AB, 1991), volume 407 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 167–188. Kluwer Acad. Publ., Dordrecht, 1993.
  52. M.Ā Levine. Mixed motives, volumeĀ 57 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1998.
  53. Yu.Ā I. Manin. Correspondences, motifs and monoidal transformations. Mat. Sb. (N.S.), 77 (119):475–507, 1968.
  54. H.Ā Matsumoto. Sur les sous-groupes arithmĆ©tiques des groupes semi-simples deployĆ©s. Ann. Sci. Ɖc. Norm. SupĆ©r. (4), 2:1–62, 1969.
  55. J.Ā W. Milnor. Introduction to algebraic K-theory, volumeĀ 72 of Ann. Math. Stud. Princeton University Press, Princeton, NJ, 1971.
  56. On the structure of Hopf algebras. Ann. of Math. (2), 81:211–264, 1965.
  57. D.Ā Quillen. On the cohomology and Kš¾Kitalic_K-theory of the general linear groups over a finite field. Ann. of Math., 96(3):552–586, 1972.
  58. D.Ā Quillen. Higher algebraic Kš¾Kitalic_K-theory. I. In Algebraic Kš¾Kitalic_K-theory, I: Higher Kš¾Kitalic_K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pages p. 85–147. Lecture Notes in Math., Vol. 341, 1973.
  59. J.Ā Rosenberg. Algebraic K-theory and its applications, volume 147 of Graduate Texts in Mathematics. Springer New York, NY, 1994.
  60. D.Ā Rudenko. On the Goncharov depth conjecture and a formula for volumes of orthoschemes. J. Amer. Math. Soc., 36(4):1003–1060, 2023.
  61. C.Ā SoulĆ©. OpĆ©rations en Kš¾{K}italic_K-thĆ©orie algĆ©brique. Canad. J. Math., 37(3):488–550, 1985.
  62. V.Ā Voevodsky. Triangulated categories of motives over a field. In Cycles, transfers, and motivic homology theories, volume 143 of Ann. of Math. Stud., pages 188–238. Princeton Univ. Press, Princeton, NJ, 2000.
  63. C.Ā Voisin. Hodge theory and complex algebraic geometry. I, volumeĀ 76 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2002. Translated from the French original by Leila Schneps.
  64. D.Ā Zagier. Polylogarithms, Dedekind zeta functions and the algebraic Kš¾Kitalic_K-theory of fields. In Arithmetic algebraic geometry (Texel, 1989), volumeĀ 89 of Progr. Math., pages 391–430. BirkhƤuser Boston, Boston, MA, 1991.
  65. D.Ā Zagier and H.Ā Gangl. Classical and elliptic polylogarithms and special values of LšæLitalic_L-series. In The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), volume 548 of NATO Sci. Ser. C Math. Phys. Sci., pages 561–615. Kluwer Acad. Publ., Dordrecht, 2000.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 41 likes.

Upgrade to Pro to view all of the tweets about this paper: