Papers
Topics
Authors
Recent
2000 character limit reached

Legible and Proactive Robot Planning for Prosocial Human-Robot Interactions (2404.03734v1)

Published 4 Apr 2024 in cs.RO, cs.SY, and eess.SY

Abstract: Humans have a remarkable ability to fluently engage in joint collision avoidance in crowded navigation tasks despite the complexities and uncertainties inherent in human behavior. Underlying these interactions is a mutual understanding that (i) individuals are prosocial, that is, there is equitable responsibility in avoiding collisions, and (ii) individuals should behave legibly, that is, move in a way that clearly conveys their intent to reduce ambiguity in how they intend to avoid others. Toward building robots that can safely and seamlessly interact with humans, we propose a general robot trajectory planning framework for synthesizing legible and proactive behaviors and demonstrate that our robot planner naturally leads to prosocial interactions. Specifically, we introduce the notion of a markup factor to incentivize legible and proactive behaviors and an inconvenience budget constraint to ensure equitable collision avoidance responsibility. We evaluate our approach against well-established multi-agent planning algorithms and show that using our approach produces safe, fluent, and prosocial interactions. We demonstrate the real-time feasibility of our approach with human-in-the-loop simulations. Project page can be found at https://uw-ctrl.github.io/phri/.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. A. Rudenko, L. Palmieri, M. Herman, K. M. Kitani, D. M. Gavrila, and K. O. Arras, “Human motion trajectory prediction: A survey,” Int. Journal of Robotics Research, vol. 39, no. 8, pp. 895–935, 2020.
  2. M. Mayer, R. Bell, and A. Buchner, “Self-protective and self-sacrificing preferences of pedestrians and passengers in moral dilemmas involving autonomous vehicles,” PLoS ONE, 2021.
  3. D. Helbing and P. Molnár, “Social force model for pedestrian dynamics,” Physical Review E, vol. 51, no. 5, pp. 4282–4286, 1995.
  4. J. Van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obstacles for real-time multi-agent navigation,” in Proc. IEEE Conf. on Robotics and Automation, 2008.
  5. R. A. Knepper and D. Rus, “Pedestrian-inspired sampling-based multi-robot collision avoidance,” in Proc. IEEE Int. Conf. on Robot and Human Interactive Communication, 2012.
  6. C. Mavrogiannis, F. Baldini, A. Wang, D. Zhao, P. Trautman, A. Steinfeld, and J. Oh, “Core challenges of social robot navigation: A survey,” ACM Transactions on Human-Robot Interaction, vol. 12, no. 3, pp. 1–39, 2023.
  7. A. Francis, C. Perez-D’Arpino, C. Li, F. Xia, A. Alahi, R. Alami, A. Bera, A. Biswas, J. Biswas, R. Chandra, H.-T. L. Chiang, M. Everett, S. Ha, J. Hart, J. P. How, H. Karnan, T.-W. E. Lee, L. J. Manso, R. Mirksy, S. Pirk, P. T. Singamaneni, P. Stone, A. V. Taylor, P. Trautman, N. Tsoi, M. Vazquez, X. Xiao, P. Xu, N. Yokoyama, A. Toshev, and R. Martın-Martın, “Principles and guidelines for evaluating social robot navigation algorithms,” Available at https://arxiv.org/abs/2306.16740, 2023.
  8. D. Sadigh, S. Sastry, S. A. Seshia, and A. D. Dragan, “Planning for autonomous cars that leverage effects on human actions,” in Robotics: Science and Systems, 2016.
  9. H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, “Socially compliant mobile robot navigation via inverse reinforcement learning,” Int. Journal of Robotics Research, vol. 35, no. 11, pp. 1289–1307, 2016.
  10. L. Sun, W. Zhan, M. Tomizuka, and A. Dragan, “Courteous autonomous cars,” in IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, 2018.
  11. B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey, “Maximum entropy inverse reinforcement learning,” in Proc. AAAI Conf. on Artificial Intelligence, 2008.
  12. S. Levine and V. Koltun, “Continuous inverse optimal control with locally optimal examples,” in Int. Conf. on Machine Learning, 2012.
  13. C. Finn, S. Levine, and P. Abbeel, “Guided cost learning: Deep inverse optimal control via policy optimization,” in Int. Conf. on Machine Learning, 2016.
  14. D. Carton, W. Olszowy, and D. Wollherr, “Measuring the effectiveness of readability for mobile robot locomotion,” Int. Journal of Social Robotics, vol. 8, pp. 721–741, 2016.
  15. W. B. G. Liebrand and C. G. McClintock, “The ring measure of social values: A computerized procedure for assessing individual differences in information processing and social value orientation.” European Journal of Personality, vol. 2, no. 3, pp. 217–230, 1988.
  16. W. Schwarting, A. Pierson, J. Alonso-Mora, S. Karaman, and D. Rus, “Social behavior for autonomous vehicles,” Proceedings of the National Academy of Sciences, vol. 116, no. 50, pp. 24 972–24 978, 2019.
  17. L. Crosato, H. P. H. Shum, E. S. L. Ho, and C. Wei, “Interaction-aware decision-making for automated vehicles using social value orientation,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 2, pp. 1339–1349, 2023.
  18. B. Toghi, R. Valiente, D. Sadigh, R. Pedarsani, and Y. P. Fallah, “Cooperative autonomous vehicles that sympathize with human drivers,” in IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, 2021.
  19. B. Toghi, R. Valiente, D. Sadigh, R. Pedarsani, and Y. Fallah, “Social coordination and altruism in autonomous driving,” IEEE Transactions on Intelligent Vehicles, vol. 23, no. 12, pp. 24 791–24 804, 2022.
  20. S. Schaefer, K. Leung, B. Ivanovic, and M. Pavone, “Leveraging neural network gradients within trajectory optimization for proactive human-robot interactions,” in Proc. IEEE Conf. on Robotics and Automation, 2021.
  21. P. Trautman and A. Krause, “Unfreezing the robot: Navigation in dense, interacting crowds,” in IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, 2010.
  22. A. D. Dragan, K. C. L. Lee, and S. S. Srinivasa, “Legibility and predictability of robot motion,” in Proc. ACM/IEEE Int. Conference on Human Robot Interaction, 2013.
  23. A. D. Dragan and S. S. Srinivasa, “Generating legible motion,” in Robotics: Science and Systems, 2013.
  24. T. Kruse, P. Basili, S. Glasauer, and A. Kirsch, “Legible robot navigation in the proximity of moving humans,” in Proc. IEEE Workshop on Advanced Robotics and its Social Impacts, 2012.
  25. C. I. Mavrogiannis, P. Alves-Olivera, W. Thomason, and R. A. Knepper, “Social momentum: Design and evaluation of a framework for socially competent robot navigation,” ACM Transactions on Human-Robot Interaction, vol. 37, no. 4, 2021.
  26. C. Lichtenthäler, T. Lorenzy, and A. Kirsch, “Influence of legibility on perceived safety in a virtual human-robot path crossing task,” in Proc. IEEE Int. Conf. on Robot and Human Interactive Communication, 2012.
  27. B. Busch, J. Grizou, M. Lopes, and F. Stulp, “Learning legible motion from human–robot interactions,” Int. Journal of Social Robotics, vol. 9, pp. 765–779, 2017.
  28. C. Schöller, A. V., L. F., and A. Knoll, “What the constant velocity model can teach us about pedestrian motion prediction,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1696–1703, 2020.
  29. M. Wang, Z. Wang, J. Talbot, J. C. Gerdes, and M. Schwager, “Game-theoretic planning for self-driving cars in multivehicle competitive scenarios,” IEEE Transactions on Robotics, vol. 37, no. 4, pp. 1313–1325, 2021.
  30. E. Schmerling, K. Leung, W. Vollprecht, and M. Pavone, “Multimodal probabilistic model-based planning for human-robot interaction,” in Proc. IEEE Conf. on Robotics and Automation, 2018.
  31. K. Leung, E. Schmerling, M. Zhang, M. Chen, J. Talbot, J. C. Gerdes, and M. Pavone, “On infusing reachability-based safety assurance within planning frameworks for human-robot vehicle interactions,” Int. Journal of Robotics Research, vol. 39, pp. 1326–1345, 2020.
  32. J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula, and C. J. Tomlin, “A general safety framework for learning-based control in uncertain robotic systems,” IEEE Transactions on Automatic Control, vol. 64, no. 7, pp. 2737–2752, 2018.
  33. K. Kitazawa and T. Fujiyama, “Pedestrian vision and collision avoidance behavior: Investigation of the information process space of pedestrians using an eye tracker,” Pedestrian and Evacuation Dynamics, pp. 95–108, 2010.
  34. S. Topan, K. Leung, Y. Chen, P. Tupekar, E. Schmerling, J. Nilsson, M. Cox, and M. Pavone, “Interaction-dynamics-aware perception zones for obstacle detection safety evaluation,” in IEEE Intelligent Vehicles Symposium, 2022.
  35. E. Tolstaya, R. Mahjourian, C. Downey, B. Varadarajan, B. Sapp, and D. Anguelov, “Identifying driver interactions via conditional behavior prediction,” in Proc. IEEE Conf. on Robotics and Automation, 2021.
  36. J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach to numerical computing,” SIAM Review, vol. 59, no. 1, pp. 65–98, 2017.
  37. I. Dunning, J. Huchette, and M. Lubin, “JuMP: A Modeling Language for Mathematical Optimization,” SIAM Review, vol. 59, no. 2, pp. 295–320, 2017.
  38. M. Lubin, O. Dowson, J. Dias Garcia, J. Huchette, B. Legat, and J. P. Vielma, “JuMP 1.0: Recent improvements to a modeling language for mathematical optimization,” Mathematical Programming Computation, 2023.
  39. A. Domahidi, E. Chu, and S. Boyd, “ECOS: An SOCP solver for embedded systems,” in European Control Conference, 2013.
  40. J. Revels, M. Lubin, and T. Papamarkou, “Forward-mode automatic differentiation in julia,” Available at https://arxiv.org/abs/1607.07892, 2016.
  41. I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games,” IEEE Transactions on Automatic Control, vol. 50, no. 7, pp. 947–957, 2005.
  42. E. Schmerling, “HJ Reachability in JAX,” Available at https://github.com/StanfordASL/hj_reachability.
  43. J. Guzzi, A. Giusti, L. M. Gambardella, G. Theraulaz, and G. A. Di Caro, “Human-friendly robot navigation in dynamic environments,” in Proc. IEEE Conf. on Robotics and Automation, 2013.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: