Papers
Topics
Authors
Recent
2000 character limit reached

Magnetic fields from small-scale primordial perturbations

Published 4 Apr 2024 in astro-ph.CO | (2404.03655v1)

Abstract: Weak magnetic fields must have existed in the early Universe, as they were sourced by the cross product of electron density and temperature gradients through the Biermann-battery mechanism. In this paper we calculate the magnetic fields generated at cosmic dawn by a variety of small-scale primordial perturbations, carefully computing the evolution of electron density and temperature fluctuations, and consistently accounting for relative velocities between baryons and dark matter. We first compute the magnetic field resulting from standard, nearly scale-invariant primordial adiabatic perturbations, making significant improvements to previous calculations. This "standard" primordial field has a root mean square (rms) of $\sim10{-15}$ nG at $20\lesssim z \lesssim 100$, with fluctuations on $\sim$ kpc comoving scales, and could serve as the seed of present-day magnetic fields observed in galaxies and galaxy clusters. In addition, we consider early-Universe magnetic fields as a possible probe of non-standard initial conditions of the Universe on small scales $k \sim 1-103$ Mpc${-1}$. To this end, we compute the maximally-allowed magnetic fields within current upper limits on small-scale adiabatic and isocurvature perturbations. Under the current Cosmic Microwave Background spectral-distortion constraints magnetic fields could be produced with a rms of $\sim 5\times 10{-11}$ nG at $z = 20$. Uncorrelated small-scale isocurvature perturbations within current Big-Bang Nucleosynthesis bounds could potentially enhance the magnetic field to $\sim 10{-14}-10{-10}$ nG at $z = 20$, depending on the specific isocurvature mode considered. While these very weak fields remain well below current observational capabilities, our work points out that magnetic fields could potentially provide an interesting window into the poorly constrained small-scale initial conditions of the Universe.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. J. P. Vallée, New Astron. Rev. 48, 763 (2004).
  2. A. Neronov and I. Vovk, Science 328, 73 (2010), arXiv:1006.3504 [astro-ph.HE] .
  3. R. Beck, Space Science Reviews 166, 215 (2012).
  4. R. Durrer and A. Neronov, Astron. Astrophys. Rev. 21, 62 (2013), arXiv:1303.7121 [astro-ph.CO] .
  5. L. Biermann, Zeitschrift Naturforschung Teil A 5, 65 (1950).
  6. S. Naoz and R. Narayan (NN13), Phys. Rev. Lett. 111, 051303 (2013), arXiv:1304.5792 [astro-ph.CO] .
  7. D. Tseliakhovich and C. Hirata, Phys. Rev. D 82, 083520 (2010), arXiv:1005.2416 [astro-ph.CO] .
  8. N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020), arXiv:1807.06209 [astro-ph.CO] .
  9. J. Chluba and D. Grin, Mon. Not. Roy. Astron. Soc. 434, 1619 (2013), arXiv:1304.4596 [astro-ph.CO] .
  10. Y. Ali-Haimoud and C. M. Hirata, Phys. Rev. D 82, 063521 (2010), arXiv:1006.1355 [astro-ph.CO] .
  11. Y. Ali-Haimoud and C. M. Hirata, Phys. Rev. D 83, 043513 (2011), arXiv:1011.3758 [astro-ph.CO] .
  12. N. Lee and Y. Ali-Haïmoud, Phys. Rev. D 102, 083517 (2020), arXiv:2007.14114 [astro-ph.CO] .
  13. N. Lee and Y. Ali-Haïmoud, Phys. Rev. D 104, 103509 (2021), arXiv:2108.07798 [astro-ph.CO] .
  14. S. Naoz and R. Barkana, Mon. Not. Roy. Astron. Soc. 362, 1047 (2005), arXiv:astro-ph/0503196 .
  15. A. Lewis, Phys. Rev. D 76, 063001 (2007), arXiv:0707.2727 [astro-ph] .
  16. P. J. E. Peebles, Astrophys. J. 153, 1 (1968).
  17. T. Venumadhav and C. Hirata, Physical Review D 91 (2015), 10.1103/physrevd.91.123009.
  18. T. Papanikolaou and K. N. Gourgouliatos, Phys. Rev. D 107, 103532 (2023), arXiv:2301.10045 [astro-ph.CO] .
  19. Y. Ali-Haïmoud, Physical Review D 99 (2019), 10.1103/physrevd.99.023523.
  20. N. Sugiyama, Astrophys. J. Suppl. 100, 281 (1995), arXiv:astro-ph/9412025 .

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 3 likes about this paper.