Papers
Topics
Authors
Recent
2000 character limit reached

Integrability of Goldilocks quantum cellular automata (2404.02994v1)

Published 3 Apr 2024 in quant-ph and cond-mat.stat-mech

Abstract: Goldilocks quantum cellular automata (QCA) have been simulated on quantum hardware and produce emergent small-world correlation networks. In Goldilocks QCA, a single-qubit unitary is applied to each qubit in a one-dimensional chain subject to a balance constraint: a qubit is updated if its neighbors are in opposite basis states. Here, we prove that a subclass of Goldilocks QCA -- including the one implemented experimentally -- map onto free fermions and therefore can be classically simulated efficiently. We support this claim with two independent proofs, one involving a Jordan--Wigner transformation and one mapping the integrable six-vertex model to QCA. We compute local conserved quantities of these QCA and predict experimentally measurable expectation values. These calculations can be applied to test large digital quantum computers against known solutions. In contrast, typical Goldilocks QCA have equilibration properties and quasienergy-level statistics that suggest nonintegrability. Still, the latter QCA conserve one quantity useful for error mitigation. Our work provides a parametric quantum circuit with tunable integrability properties with which to test quantum hardware.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (56)
  1. M. Delorme, An introduction to cellular automata: some basic definitions and concepts, in Cellular automata: a parallel model (Springer, 1999) pp. 5–49.
  2. S. Wolfram, Statistical mechanics of cellular automata, Rev. Mod. Phys. 55, 601 (1983).
  3. M. Cook et al., Universality in elementary cellular automata, Complex systems 15, 1 (2004).
  4. N. Margolus, Physics and computation, Ph.D. thesis, Massachusetts Institute of Technology (1987).
  5. P. Arrighi, An overview of quantum cellular automata, Nat. Comp. 18, 885 (2019).
  6. T. Farrelly, A review of quantum cellular automata, Quantum 4, 368 (2020).
  7. T. Prosen, Many-body quantum chaos and dual-unitarity round-a-faces, Chaos: An Interdisciplinary Journal of Nonlinear Science 31, 093101 (2021a).
  8. L. Onsager, Crystal statistics. i. a two-dimensional model with an order-disorder transition, Phys. Rev. 65, 117 (1944).
  9. L. Pauling, The structure and entropy of ice and of other crystals with some randomness of atomic arrangement, Journal of the American Chemical Society 57, 2680 (1935).
  10. E. H. Lieb, Residual entropy of square ice, Phys. Rev. 162, 162 (1967).
  11. P. Jordan and E. Wigner, Über das paulische Äquivalenzverbot, Zeitschrift für Physik 47, 631 (1928).
  12. H. Bethe, Zur theorie der metalle: I. eigenwerte und eigenfunktionen der linearen atomkette, Zeitschrift für Physik 71, 205 (1931).
  13. C. N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett. 19, 1312 (1967).
  14. R. J. Baxter, One-dimensional anisotropic heisenberg chain, Annals of Physics 70, 323 (1972).
  15. J.-S. Caux and J. Mossel, Remarks on the notion of quantum integrability, Journal of Statistical Mechanics: Theory and Experiment 2011, P02023 (2011).
  16. R. J. Baxter, Exactly solved models in statistical mechanics (Dover Pubns, 2008).
  17. A. L. Retore, Introduction to classical and quantum integrability, Journal of Physics A: Mathematical and Theoretical 55, 173001 (2022).
  18. V. V. Bazhanov and S. M. Sergeev, An ising-type formulation of the six-vertex model, Nuclear Physics B 986, 116055 (2023).
  19. M. Vanicat, L. Zadnik, and T. Prosen, Integrable trotterization: Local conservation laws and boundary driving, Phys. Rev. Lett. 121, 030606 (2018).
  20. M. Ljubotina, L. Zadnik, and T. Prosen, Ballistic spin transport in a periodically driven integrable quantum system, Phys. Rev. Lett. 122, 150605 (2019).
  21. B. Bertini, P. Kos, and T. Prosen, Exact correlation functions for dual-unitary lattice models in 1+ 1 dimensions, Physical review letters 123, 210601 (2019).
  22. M. Medenjak, T. Prosen, and L. Zadnik, Rigorous bounds on dynamical response functions and time-translation symmetry breaking, SciPost Phys. 9, 003 (2020).
  23. P. W. Claeys, J. Herzog-Arbeitman, and A. Lamacraft, Correlations and commuting transfer matrices in integrable unitary circuits, SciPost Phys. 12, 007 (2022).
  24. Y. Miao and E. Vernier, Integrable Quantum Circuits from the Star-Triangle Relation, Quantum 7, 1160 (2023).
  25. B. Pozsgay, Quantum circuits with free fermions in disguise, arXiv:2402.02984  (2024).
  26. B. M. Terhal and D. P. DiVincenzo, Classical simulation of noninteracting-fermion quantum circuits, Phys. Rev. A 65, 032325 (2002).
  27. S. Bravyi, Lagrangian representation for fermionic linear optics, arXiv preprint quant-ph/0404180  (2004).
  28. J. Surace and L. Tagliacozzo, Fermionic Gaussian states: an introduction to numerical approaches, SciPost Phys. Lect. Notes 54, 10.21468/SciPostPhysLectNotes.54 (2022).
  29. E. Lieb, T. Schultz, and D. Mattis, Two soluble models of an antiferromagnetic chain, Annals of Physics 16, 407 (1961).
  30. G. G. Cabrera and R. Jullien, Role of boundary conditions in the finite-size ising model, Phys. Rev. B 35, 7062 (1987).
  31. K. Li and H. C. Po, Higher-dimensional jordan-wigner transformation and auxiliary majorana fermions, Phys. Rev. B 106, 115109 (2022).
  32. S. Gopalakrishnan and B. Zakirov, Facilitated quantum cellular automata as simple models with non-thermal eigenstates and dynamics, Quantum Science and Technology 3, 044004 (2018).
  33. S. Gopalakrishnan, Operator growth and eigenstate entanglement in an interacting integrable floquet system, Phys. Rev. B 98, 060302 (2018).
  34. The more common JW transformation reads a^j=\prod@⁢\slimits@k<j⁢σ^kz⁢(σ^jx+i⁢σ^jy)/2subscript^𝑎𝑗\prod@subscript\slimits@𝑘𝑗subscriptsuperscript^𝜎𝑧𝑘subscriptsuperscript^𝜎𝑥𝑗𝑖subscriptsuperscript^𝜎𝑦𝑗2\hat{a}_{j}=\prod@\slimits@_{k<j}\hat{\sigma}^{z}_{k}(\hat{\sigma}^{x}_{j}+i% \hat{\sigma}^{y}_{j})/2over^ start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = start_POSTSUBSCRIPT italic_k < italic_j end_POSTSUBSCRIPT over^ start_ARG italic_σ end_ARG start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( over^ start_ARG italic_σ end_ARG start_POSTSUPERSCRIPT italic_x end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT + italic_i over^ start_ARG italic_σ end_ARG start_POSTSUPERSCRIPT italic_y end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) / 2. Our choice renders the gates σy^^superscript𝜎𝑦\hat{\sigma^{y}}over^ start_ARG italic_σ start_POSTSUPERSCRIPT italic_y end_POSTSUPERSCRIPT end_ARG and σ^jz⁢σ^j+1zsubscriptsuperscript^𝜎𝑧𝑗subscriptsuperscript^𝜎𝑧𝑗1\hat{\sigma}^{z}_{j}\hat{\sigma}^{z}_{j+1}over^ start_ARG italic_σ end_ARG start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT over^ start_ARG italic_σ end_ARG start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT free fermionic, as needed for our proof. More generally, all the usual results hold under the cyclic replacement (“usual JW”) →→\to→ (“our JW”): z→y→𝑧𝑦z\to yitalic_z → italic_y, x→z→𝑥𝑧x\to zitalic_x → italic_z, and y→x→𝑦𝑥y\to xitalic_y → italic_x. Our JW transformation privileges the y𝑦yitalic_y-direction, rather than the conventional z𝑧zitalic_z-direction, due to the e±i⁢(α/2)⁢σ^jysuperscript𝑒plus-or-minus𝑖𝛼2subscriptsuperscript^𝜎𝑦𝑗e^{\pm i(\alpha/2)\hat{\sigma}^{y}_{j}}italic_e start_POSTSUPERSCRIPT ± italic_i ( italic_α / 2 ) over^ start_ARG italic_σ end_ARG start_POSTSUPERSCRIPT italic_y end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_POSTSUPERSCRIPT in u^jsubscript^𝑢𝑗\hat{u}_{j}over^ start_ARG italic_u end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT.
  35. L. P. Kadanoff and F. J. Wegner, Some critical properties of the eight-vertex model, Physical Review B 4, 3989 (1971).
  36. F. Y. Wu, Exact solution of a model of an antiferroelectric transition, Physical Review 183, 604 (1969).
  37. R. J. Baxter, Exact isotherm for the f𝑓fitalic_f model in direct and staggered electric fields, Phys. Rev. B 1, 2199 (1970).
  38. T. Gombor and B. Pozsgay, Integrable spin chains and cellular automata with medium-range interaction, Phys. Rev. E 104, 054123 (2021).
  39. M. Fagotti and F. H. L. Essler, Reduced density matrix after a quantum quench, Phys. Rev. B 87, 245107 (2013).
  40. M. Fagotti, On conservation laws, relaxation and pre-relaxation after a quantum quench, J. Stat. Mech. 2014, P03016 (2014).
  41. T. Prosen, Chaos and complexity of quantum motion, Journal of Physics A: Mathematical and Theoretical 40, 7881 (2007).
  42. We identify certain equipment to specify the computational procedure adequately. Such identification is not intended to imply recommendation or endorsement of any product or service by NIST; nor is it intended to imply that the software identified is necessarily the best available for the purpose.
  43. Á. L. Corps and A. Relaño, General theory for discrete symmetry-breaking equilibrium states, arXiv:2303.18020  (2023).
  44. A. C. Potter and R. Vasseur, Symmetry constraints on many-body localization, Physical Review B 94, 224206 (2016).
  45. Reference [51] discusses neither mappings onto free fermions nor the gate (4) with general parameter values.
  46. M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452, 854 (2008).
  47. L. Vidmar and M. Rigol, Generalized gibbs ensemble in integrable lattice models, J. Stat. Mech. 2016, 064007 (2016).
  48. F. H. Essler and M. Fagotti, Quench dynamics and relaxation in isolated integrable quantum spin chains, J. Stat. Mech. 2016, 064002 (2016).
  49. B. Pozsgay, E. Vernier, and M. A. Werner, On generalized gibbs ensembles with an infinite set of conserved charges, Journal of Statistical Mechanics: Theory and Experiment 2017, 093103 (2017).
  50. L. D. Landau and E. M. Lifshitz, Statistical Physics: Part 1 (Butterworth-Heinemann, Oxford, 1980).
  51. N. Yunger Halpern, M. E. Beverland, and A. Kalev, Noncommuting conserved charges in quantum many-body thermalization, Phys. Rev. E 101, 042117 (2020).
  52. V. Oganesyan and D. A. Huse, Localization of interacting fermions at high temperature, Phys. Rev. B 75, 155111 (2007).
  53. M. V. Berry and M. Tabor, Level clustering in the regular spectrum, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 356, 375 (1977).
  54. O. Bohigas, M. J. Giannoni, and C. Schmit, Characterization of chaotic quantum spectra and universality of level fluctuation laws, Phys. Rev. Lett. 52, 1 (1984).
  55. L. Sá, P. Ribeiro, and T. Prosen, Integrable nonunitary open quantum circuits, Phys. Rev. B 103, 115132 (2021).
  56. P. Fendley, Free fermions in disguise, J. Phys. A: Math. Theor. 52, 335002 (2019).
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 21 likes about this paper.