Papers
Topics
Authors
Recent
2000 character limit reached

Zero-temperature entanglement membranes in quantum circuits (2404.02975v2)

Published 3 Apr 2024 in quant-ph

Abstract: In chaotic quantum systems, the entanglement of a region $A$ can be described in terms of the surface tension of a spacetime membrane pinned to the boundary of $A$. Here, we interpret the tension of this entanglement membrane in terms of the rate at which information "flows" across it. For any orientation of the membrane, one can define (generically nonunitary) dynamics across the membrane; we explore this dynamics in various space-time translation-invariant (STTI) stabilizer circuits in one and two spatial dimensions. We find that the flux of information across the membrane in these STTI circuits reaches a steady state. In the cases where this dynamics is nonunitary and the steady state flux is nonzero, this occurs because the dynamics across the membrane is unitary in a subspace of extensive entropy. This generalized unitarity is present in a broad class of STTI stabilizer circuits, and is also present in some special non-stabilizer models. The existence of multiple unitary (or generalized unitary) directions forces the entanglement membrane tension to be a piecewise linear function of the orientation of the membrane; in this respect, the entanglement membrane behaves like an interface in a zero-temperature classical lattice model. We argue that entanglement membranes in random stabilizer circuits that produce volume-law entanglement are also effectively at zero temperature.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.