Quantum thermodynamics of nonequilibrium processes in lattice gauge theories (2404.02965v2)
Abstract: A key objective in nuclear and high-energy physics is to describe nonequilibrium dynamics of matter, e.g., in the early universe and in particle colliders, starting from the Standard Model. Classical-computing methods, via the framework of lattice gauge theory, have experienced limited success in this mission. Quantum simulation of lattice gauge theories holds promise for overcoming computational limitations. Because of local constraints (Gauss's laws), lattice gauge theories have an intricate Hilbert-space structure. This structure complicates the definition of thermodynamic properties of systems coupled to reservoirs during equilibrium and nonequilibrium processes. We show how to define thermodynamic quantities such as work and heat using strong-coupling thermodynamics, a framework that has recently burgeoned within the field of quantum thermodynamics. Our definitions suit instantaneous quenches, simple nonequilibrium processes undertaken in quantum simulators. To illustrate our framework, we compute the work and heat exchanged during a quench in a $\mathbb{Z}_2$ lattice gauge theory coupled to matter in 1+1 dimensions. The thermodynamic quantities, as functions of the quench parameter, evidence a phase transition. For general thermal states, we derive a simple relation between a quantum many-body system's entanglement Hamiltonian, measurable with quantum-information-processing tools, and the Hamiltonian of mean force, used to define strong-coupling thermodynamic quantities.
- J. F. Donoghue, E. Golowich, and B. R. Holstein, Dynamics of the standard model (Cambridge university press, 2014).
- M. D. Schwartz, Quantum field theory and the standard model (Cambridge university press, 2014).
- A. Pich, The standard model of electroweak interactions, arXiv preprint arXiv:1201.0537 (2012).
- R. L. Workman and Others (Particle Data Group), Review of Particle Physics, PTEP 2022, 083C01 (2022).
- E. Fradkin, Field theories of condensed matter physics (Cambridge University Press, 2013).
- X.-G. Wen, Topological orders in rigid states, International Journal of Modern Physics B 4, 239 (1990).
- M. A. Levin and X.-G. Wen, String-net condensation: A physical mechanism for topological phases, Physical Review B 71, 045110 (2005).
- A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Annals of physics 303, 2 (2003).
- A. Kitaev, Anyons in an exactly solved model and beyond, Annals of Physics 321, 2 (2006).
- S. Das Sarma, M. Freedman, and C. Nayak, Topological quantum computation, Physics Today 59, 32 (2006).
- V. Lahtinen and J. K. Pachos, A Short Introduction to Topological Quantum Computation, SciPost Phys. 3, 021 (2017).
- R. Vogt, Ultrarelativistic heavy-ion collisions (Elsevier, 2007).
- W. Florkowski, Phenomenology of ultra-relativistic heavy-ion collisions (World Scientific Publishing Company, 2010).
- P. J. E. Peebles, Principles of physical cosmology, Vol. 27 (Princeton university press, 1993).
- E. Kolb, The early universe (CRC press, 2018).
- J. B. Kogut and M. A. Stephanov, The phases of quantum chromodynamics: From confinement to extreme environments, Vol. 21 (Cambridge University Press, 2004).
- K. G. Wilson, Confinement of quarks, Physical review D 10, 2445 (1974).
- J. Kogut and L. Susskind, Hamiltonian formulation of wilson’s lattice gauge theories, Physical Review D 11, 395 (1975).
- J. B. Kogut, An introduction to lattice gauge theory and spin systems, Reviews of Modern Physics 51, 659 (1979).
- M. Creutz, Quarks, gluons and lattices (Cambridge University Press, 1983).
- M. Creutz, L. Jacobs, and C. Rebbi, Monte carlo computations in lattice gauge theories, Physics Reports 95, 201 (1983).
- H.-T. Ding, F. Karsch, and S. Mukherjee, Thermodynamics of strong-interaction matter from Lattice QCD, International Journal of Modern Physics E 24, 1530007 (2015).
- C. Ratti, Lattice QCD and heavy ion collisions: a review of recent progress, Reports on Progress in Physics 81, 084301 (2018).
- O. Philipsen, Constraining the qcd phase diagram at finite temperature and density, arXiv preprint arXiv:1912.04827 (2019).
- J. N. Guenther, Overview of the QCD phase diagram, The European Physical Journal A 57, 1 (2021).
- K. Nagata, Finite-density lattice qcd and sign problem: Current status and open problems, Progress in Particle and Nuclear Physics , 103991 (2022).
- M. Troyer and U.-J. Wiese, Computational complexity and fundamental limitations to fermionic quantum monte carlo simulations, Physical review letters 94, 170201 (2005).
- C. Gattringer and K. Langfeld, Approaches to the sign problem in lattice field theory, International Journal of Modern Physics A 31, 1643007 (2016).
- G. Pan and Z. Y. Meng, Sign problem in quantum monte carlo simulation, arXiv preprint arXiv:2204.08777 (2022).
- M. C. Banuls and K. Cichy, Review on novel methods for lattice gauge theories, Reports on Progress in Physics 83, 024401 (2020).
- Y. Meurice, R. Sakai, and J. Unmuth-Yockey, Tensor lattice field theory for renormalization and quantum computing, Reviews of modern physics 94, 025005 (2022).
- N. Klco, A. Roggero, and M. J. Savage, Standard model physics and the digital quantum revolution: thoughts about the interface, Reports on Progress in Physics 85, 064301 (2022).
- S. Vinjanampathy and J. Anders, Quantum thermodynamics, Contemporary Physics 57, 545 (2016), https://doi.org/10.1080/00107514.2016.1201896 .
- N. Y. Halpern, Quantum Steampunk: The Physics of Yesterday’s Tomorrow (JHU Press, 2022).
- H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford U. Press, Oxford, 2007).
- S. Deffner and S. Campbell, The principles of modern thermodynamics, in Quantum Thermodynamics, 2053-2571 (Morgan & Claypool Publishers, 2019) pp. 1–1 to 2–37.
- A. Polkovnikov and D. Sels, Thermalization in small quantum systems, Science 353, 752 (2016).
- U. Seifert, First and second law of thermodynamics at strong coupling, Phys. Rev. Lett. 116, 020601 (2016).
- C. Jarzynski, Stochastic and macroscopic thermodynamics of strongly coupled systems, Phys. Rev. X 7, 011008 (2017).
- P. Strasberg and M. Esposito, Non-markovianity and negative entropy production rates, Phys. Rev. E 99, 012120 (2019).
- A. Rivas, Strong coupling thermodynamics of open quantum systems, Phys. Rev. Lett. 124, 160601 (2020).
- P. Strasberg, Thermodynamics of quantum causal models: An inclusive, hamiltonian approach, Quantum 4, 240 (2020).
- Y.-Y. Xu, J. Gong, and W.-M. Liu, Quantum thermodynamics with strong system-bath coupling: A mapping approach, arXiv preprint arXiv:2304.08268 (2023).
- Á. Rivas, Quantum thermodynamics in the refined weak coupling limit, Entropy 21, 10.3390/e21080725 (2019).
- M. Campisi, P. Talkner, and P. Hänggi, Thermodynamics and fluctuation theorems for a strongly coupled open quantum system: an exactly solvable case, Journal of Physics A: Mathematical and Theoretical 42, 392002 (2009).
- P. Buividovich and M. Polikarpov, Entanglement entropy in gauge theories and the holographic principle for electric strings, Physics Letters B 670, 141 (2008).
- W. Donnelly, Decomposition of entanglement entropy in lattice gauge theory, Physical Review D 85, 085004 (2012).
- H. Casini, M. Huerta, and J. A. Rosabal, Remarks on entanglement entropy for gauge fields, Physical Review D 89, 085012 (2014).
- D. Radicevic, Notes on entanglement in abelian gauge theories, arXiv preprint arXiv:1404.1391 (2014).
- R. M. Soni and S. P. Trivedi, Aspects of entanglement entropy for gauge theories, Journal of High Energy Physics 2016, 1 (2016).
- A. Mitra, Quantum quench dynamics, Annual Review of Condensed Matter Physics 9, 245 (2018).
- H. Li and F. D. M. Haldane, Entanglement spectrum as a generalization of entanglement entropy: Identification of topological order in non-abelian fractional quantum hall effect states, Phys. Rev. Lett. 101, 010504 (2008).
- C. Jarzynski, Nonequilibrium work theorem for a system strongly coupled to a thermal environment, Journal of Statistical Mechanics: Theory and Experiment 2004, P09005 (2004).
- P. Talkner and P. Hänggi, Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical, Reviews of Modern Physics 92, 041002 (2020).
- Boltzmann’s constant is set to one throughout.
- J. Eisert, M. Friesdorf, and C. Gogolin, Quantum many-body systems out of equilibrium, Nature Physics 11, 124 (2015).
- D. E. Kharzeev and Y. Kikuchi, Real-time chiral dynamics from a digital quantum simulation, Physical Review Research 2, 023342 (2020).
- H.-Y. Huang, R. Kueng, and J. Preskill, Predicting many properties of a quantum system from very few measurements, Nature Physics 16, 1050 (2020).
- M. Dalmonte, B. Vermersch, and P. Zoller, Quantum simulation and spectroscopy of entanglement hamiltonians, Nature Physics 14, 827 (2018).
- J. Bringewatt, J. Kunjummen, and N. Mueller, Randomized measurement protocols for lattice gauge theories, arXiv preprint arXiv:2303.15519 (2023).
- N. Mueller (2024), unpublished notes.
- Y. Wu and J. B. Wang, Estimating gibbs partition function with quantum clifford sampling, Quantum Science and Technology 7, 025006 (2022).
- R. Kawai, J. M. R. Parrondo, and C. V. den Broeck, Dissipation: The phase-space perspective, Phys. Rev. Lett. 98, 080602 (2007).
- C. Jarzynski, Equalities and inequalities: irreversibility and the second law of thermodynamics at the nanoscale, Annu. Rev. Cond. Matt. Phys. 2, 329 (2011).
- J. R. Stryker, Oracles for gauss’s law on digital quantum computers, Physical Review A 99, 042301 (2019).
- I. Raychowdhury and J. R. Stryker, Solving gauss’s law on digital quantum computers with loop-string-hadron digitization, Physical Review Research 2, 033039 (2020).
- E. Zohar and B. Reznik, Confinement and lattice quantum-electrodynamic electric flux tubes simulated with ultracold atoms, Phys. Rev. Lett. 107, 275301 (2011).
- E. Zohar, J. I. Cirac, and B. Reznik, Simulating (2+1212+12 + 1)-Dimensional Lattice QED with Dynamical Matter Using Ultracold Atoms, Phys. Rev. Lett. 110, 055302 (2013).
- Z. Davoudi, N. Mueller, and C. Powers, Towards quantum computing phase diagrams of gauge theories with thermal pure quantum states, Physical Review Letters 131, 081901 (2023).
- J. C. Halimeh and P. Hauke, Stabilizing gauge theories in quantum simulators: A brief review (2022), arXiv:2204.13709 [cond-mat.quant-gas] .
- The gauge link and electric field are two conjugate operators in a gauge theory, similarly to position and momentum in quantum mechanics.
- Numerical computations of this work are performed by manually restricting to the physical Hilbert space.
- B. A. Bernevig, Topological insulators and topological superconductors (Princeton university press, 2013).
- K. Seo, C. Zhang, and S. Tewari, Thermodynamic signatures for topological phase transitions to majorana and weyl superfluids in ultracold fermi gases, Physical Review A 87, 063618 (2013).
- S. Kempkes, A. Quelle, and C. M. Smith, Universalities of thermodynamic signatures in topological phases, Scientific reports 6, 38530 (2016).
- A. Carollo, D. Valenti, and B. Spagnolo, Geometry of quantum phase transitions, Physics Reports 838, 1 (2020).
- M. Heyl, Dynamical quantum phase transitions: a review, Reports on Progress in Physics 81, 054001 (2018).
- N. Klco, M. J. Savage, and J. R. Stryker, SU (2) non-Abelian gauge field theory in one dimension on digital quantum computers, Physical Review D 101, 074512 (2020).
- A. Ciavarella, N. Klco, and M. J. Savage, Trailhead for quantum simulation of SU(3) Yang-Mills lattice gauge theory in the local multiplet basis, Phys. Rev. D 103, 094501 (2021).
- S. Notarnicola, M. Collura, and S. Montangero, Real-time-dynamics quantum simulation of (1+ 1)-dimensional lattice qed with rydberg atoms, Physical Review Research 2, 013288 (2020).
- F. M. Surace and A. Lerose, Scattering of mesons in quantum simulators, New Journal of Physics 23, 062001 (2021).
- G.-X. Su, J. Osborne, and J. C. Halimeh, A cold-atom particle collider, arXiv preprint arXiv:2401.05489 (2024).
- Z. Davoudi, C.-C. Hsieh, and S. V. Kadam, Scattering wave packets of hadrons in gauge theories: Preparation on a quantum computer, arXiv preprint arXiv:2402.00840 (2024).
- K. Zawadzki, R. M. Serra, and I. D’Amico, Work-distribution quantumness and irreversibility when crossing a quantum phase transition in finite time, Physical Review Research 2, 033167 (2020).
- Q. Wang and H. Quan, Probing the excited-state quantum phase transition through statistics of loschmidt echo and quantum work, Physical Review E 96, 032142 (2017).
- S. D. Geraedts, R. Nandkishore, and N. Regnault, Many-body localization and thermalization: Insights from the entanglement spectrum, Physical Review B 93, 174202 (2016).
- N. Mueller, T. V. Zache, and R. Ott, Thermalization of gauge theories from their entanglement spectrum, Physical Review Letters 129, 011601 (2022).
- C. De Sa, Low-precision arithmetic, CS4787 Lecture 21, Cornell University (2020).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.