Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Random approximation of convex bodies in Hausdorff metric (2404.02870v1)

Published 3 Apr 2024 in math.MG and math.PR

Abstract: While there is extensive literature on approximation, deterministic as well as random, of general convex bodies $K$ in the symmetric difference metric, or other metrics arising from intrinsic volumes, very little is known for corresponding random results in the Hausdorff distance when the approximant $K_n$ is given by the convex hull of $n$ independent random points chosen uniformly on the boundary or in the interior of $K$. When $K$ is a polygon and the points are chosen on its boundary, we determine the exact limiting behavior of the expected Hausdorff distance between a polygon as $n\to\infty$. From this we derive the behavior of the asymptotic constant for a regular polygon in the number of vertices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. I. Bárány. Intrinsic volumes and f𝑓fitalic_f-vectors of random polytopes. Math. Ann., 285(4):671–699, 1989.
  2. I. Bárány. Random polytopes in smooth convex bodies. Mathematika, 39(1):81–92, 1992.
  3. I. Bárány and C. Buchta. Random polytopes in a convex polytope, independence of shape, and concentration of vertices. Math. Ann., 297(3):467–497, 1993.
  4. On the Hausdorff distance between a convex set and an interior random convex hull. Adv. in Appl. Probab., 30(2):295–316, 1998.
  5. V.-E. Brunel. Uniform behaviors of random polytopes under the Hausdorff metric. Bernoulli, 25(3):1770–1793, 2019.
  6. L. Dümbgen and G. Walther. Rates of convergence for random approximations of convex sets. Adv. in Appl. Probab., 28(2):384–393, 1996.
  7. S. Glasauer and R. Schneider. Asymptotic approximation of smooth convex bodies by polytopes. Forum Math., 8(3):363–377, 1996.
  8. Table of integrals, series, and products. Elsevier/Academic Press, Amsterdam, seventh edition, 2007.
  9. G. Last and M. Penrose. Lectures on the Poisson process, volume 7 of Institute of Mathematical Statistics Textbooks. Cambridge University Press, Cambridge, 2018.
  10. Best and random approximation of a convex body by a polytope. J. Complexity, 71:Paper No. 101652, 19, 2022.
  11. M. Reitzner. Random points on the boundary of smooth convex bodies. Trans. Amer. Math. Soc., 354(6):2243–2278, 2002.
  12. The convex hull of random points on the boundary of a simple polytope. Discrete Comput. Geom., 69(2):453–504, 2023.
  13. A. Rényi and R. Sulanke. Über die konvexe Hülle von n𝑛nitalic_n zufällig gewählten Punkten. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 2:75–84 (1963), 1963.
  14. A. Rényi and R. Sulanke. Über die konvexe Hülle von n𝑛nitalic_n zufällig gewählten Punkten. II. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 3:138–147 (1964), 1964.
  15. R. Schneider. Random approximation of convex sets*. Journal of Microscopy, 151(3):211–227, 1988.
  16. C. Schütt. Random polytopes and affine surface area. Math. Nachr., 170:227–249, 1994.
  17. C. Schütt and E. M. Werner. Polytopes with vertices chosen randomly from the boundary of a convex body. In Geometric aspects of functional analysis, volume 1807 of Lecture Notes in Math., pages 241–422. Springer, Berlin, 2003.
  18. G. Walther. On a generalization of Blaschke’s rolling theorem and the smoothing of surfaces. Math. Methods Appl. Sci., 22(4):301–316, 1999.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: