Spin foam amplitude of the black-to-white hole transition (2404.02796v2)
Abstract: It has been conjectured that quantum gravity effects may cause the black-to-white hole transition due to quantum tunneling. The transition amplitude of this process is explored within the framework of the spin foam model on a 2-complex containing 56 vertices. We develop a systematic way to construct the bulk triangulation from the boundary triangulation to obtain the 2-complex. By using Thiemann's complexifier coherent state as the boundary state to resemble the semiclassical geometry, we introduce a procedure to calculate the parameters labeling the coherent state from the continuous curved geometry. Considering that triad fields of different orientations, i.e., $e_ia$ and $-e_ia$, give the same intrinsic geometry of the boundary, we creatively adopt the boundary state as a superposition of the coherent states associated with both orientations. We employ the method of complex critical point to numerically compute the transition amplitude. Despite the numerical results, it is interestingly found that the transition amplitude is dominated by the terms allowing the change in orientation. This suggests that the black-to-white hole transition should be accompanied by quantum tunneling process of a change in orientation.
- J. M. Maldacena, Black holes in string theory, Ph.D. thesis, Princeton U. (1996), arXiv:hep-th/9607235 .
- R. M. Wald, Living Rev. Rel. 4, 6 (2001), arXiv:gr-qc/9912119 .
- D. N. Page, New J. Phys. 7, 203 (2005), arXiv:hep-th/0409024 .
- B. Dittrich and R. Loll, Class. Quant. Grav. 23, 3849 (2006), arXiv:gr-qc/0506035 .
- W. G. Unruh and R. M. Wald, Rept. Prog. Phys. 80, 092002 (2017), arXiv:1703.02140 [hep-th] .
- K. Akiyama et al. (Event Horizon Telescope), Astrophys. J. Lett. 875, L1 (2019), arXiv:1906.11238 [astro-ph.GA] .
- R. Gambini, J. Olmedo, and J. Pullin, “Quantum Geometry and Black Holes,” (2023) arXiv:2211.05621 [gr-qc] .
- J. R. Oppenheimer and H. Snyder, Phys. Rev. 56, 455 (1939).
- P. S. Joshi and D. Malafarina, Int. J. Mod. Phys. D 20, 2641 (2011), arXiv:1201.3660 [gr-qc] .
- J. G. Polchinski, String theory, volume I: An introduction to the bosonic string (Cambridge university press Cambridge, 1998).
- A. Ashtekar and J. Lewandowski, Class. Quant. Grav. 21, R53 (2004), arXiv:gr-qc/0404018 .
- T. Thiemann, Modern Canonical Quantum General Relativity, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2007).
- C. Rovelli and F. Vidotto, Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2014).
- R. Loll, Class. Quant. Grav. 37, 013002 (2020), arXiv:1905.08669 [hep-th] .
- S. Surya, Living Rev. Rel. 22, 5 (2019), arXiv:1903.11544 [gr-qc] .
- R. Gambini and J. Pullin, Phys. Rev. Lett. 110, 211301 (2013), arXiv:1302.5265 [gr-qc] .
- M. Han and H. Liu, Class. Quant. Grav. 39, 035011 (2022), arXiv:2012.05729 [gr-qc] .
- C. Zhang, Phys. Rev. D 104, 126003 (2021), arXiv:2106.08202 [gr-qc] .
- B. K. Tippett and V. Husain, Phys. Rev. D 84, 104031 (2011), arXiv:1106.1118 [gr-qc] .
- W. Piechocki and T. Schmitz, Phys. Rev. D 102, 046004 (2020), arXiv:2004.02939 [gr-qc] .
- C. Kiefer and H. Mohaddes, Phys. Rev. D 107, 126006 (2023).
- M. Bobula and T. Pawłowski, Phys. Rev. D 108, 026016 (2023), arXiv:2303.12708 [gr-qc] .
- J. Lin and X. Zhang, (2024), arXiv:2402.13638 [gr-qc] .
- D. M. Gingrich, Phys. Rev. D 109, 044044 (2024), arXiv:2309.00722 [gr-qc] .
- H. M. Haggard and C. Rovelli, Phys. Rev. D 92, 104020 (2015), arXiv:1407.0989 [gr-qc] .
- A. Rignon-Bret and C. Rovelli, Phys. Rev. D 105, 086003 (2022), arXiv:2108.12823 [gr-qc] .
- C. Zhang, https://github.com/czhangUW/BH2WHTranstionInSF (2024).
- T. Thiemann, Class. Quant. Grav. 18, 2025 (2001), arXiv:hep-th/0005233 [hep-th] .
- T. Thiemann, Class. Quant. Grav. 23, 2063 (2006), arXiv:gr-qc/0206037 .
- T. Thiemann and O. Winkler, Class. Quant. Grav. 18, 2561 (2001), arXiv:hep-th/0005237 .
- A. Dapor and K. Liegener, Phys. Lett. B 785, 506 (2018), arXiv:1706.09833 [gr-qc] .
- J. R. Klauder and B.-S. Skagerstam, Coherent states: applications in physics and mathematical physics (World scientific, 1985).
- C. Rovelli and S. Speziale, Phys. Rev. D 82, 044018 (2010), arXiv:1005.2927 [gr-qc] .
- M. Han and T. Krajewski, Class. Quant. Grav. 31, 015009 (2014), arXiv:1304.5626 [gr-qc] .
- M. Han and M. Zhang, Class. Quant. Grav. 30, 165012 (2013), arXiv:1109.0499 [gr-qc] .
- L. Hormander, “The analysis of linear partial differential operators i,” in Ordered Sets: Proceedings of the NATO Advanced Study Institute held at Banff, Canada, August 28 to September 12, 1981 (Springer-Verlag Berlin, 1983) Chap. Chapter 7, p. Theorem 7.7.5.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.