Selecting High-Dimensional Representations of Physical Systems by Reweighted Diffusion Maps (2404.02639v1)
Abstract: Constructing reduced representations of high-dimensional systems is a fundamental problem in physical chemistry. Many unsupervised machine learning methods can automatically find such low-dimensional representations. However, an often overlooked problem is what high-dimensional representation should be used to describe systems before dimensionality reduction. Here, we address this issue using a recently developed method called reweighted diffusion map [J. Chem. Theory Comput. 2022, 18, 7179-7192]. We show how high-dimensional representations can be quantitatively selected by exploring the spectral decomposition of Markov transition matrices built from data obtained from standard or enhanced sampling atomistic simulations. We demonstrate the performance of the method in several high-dimensional examples.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.