Papers
Topics
Authors
Recent
2000 character limit reached

Polyvalent Machine-Learned Potential for Cobalt: from Bulk to Nanoparticles

Published 3 Apr 2024 in cond-mat.mtrl-sci and cond-mat.mes-hall | (2404.02626v2)

Abstract: We present the development and applications of a quadratic Spectral Neighbor Analysis Potential (q-SNAP) for ferromagnetic cobalt. Trained on Density Functional Theory calculations using the Perdew-Burke-Ernzerhof (DFT-PBE) functional, this machine-learned potential enables simulations of large systems over extended time scales across a wide range of temperatures and pressures at near DFT accuracy. It is validated by closely reproducing the phonon dispersions of hexagonal close-packed (hcp) and face-centered cubic (fcc) Co, surface energies, and the relative stability of nanoparticles of various shapes. An important feature of this novel potential is its numerical stability in long molecular dynamics simulations. This robustness is exploited to compute the heat capacity of nanoparticles containing up to 9201 atoms, showing convergence to less than 2 J.K-1.mol-1 after 100 ns. Computations of the melting temperature of nanoparticles as a function of their size revealed a convergence to the bulk limit in excellent agreement with the experimental value. Thus, the new, highly accurate machine-learned potential for Co opens exciting opportunities for further applications such as the dynamics of nanoparticles in catalytic reactions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. H. Matter, J. Winter, and W. Triftshäuser, Phase transformations and vacancy formation energies of transition metals by positron annihilation, Appl. Phys. 20, 135 (1979).
  2. M. S. Van Dusen and A. I. Dahl, Freezing points of cobalt and nickel and a new determination of Planck’s constant C2, Science 106, 428 (1947).
  3. D. Coutsouradis, A. Davin, and M. Lamberigts, Cobalt-based superalloys for applications in gas turbines, Materials Science and Engineering 88, 11 (1987).
  4. K. J. Strnat and R. M. W. Strnat, Rare earth-cobalt permanent magnets, Journal of Magnetism and Magnetic Materials 100, 38 (1991).
  5. D. Astruc, Introduction: Nanoparticles in catalysis, Chem. Rev. 120, 461 (2020).
  6. W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133 (1965).
  7. V. L. Deringer, M. A. Caro, and G. Csányi, Machine learning interatomic potentials as emerging tools for materials science, Advanced Materials 31, 1902765 (2019).
  8. J. Behler and M. Parrinello, Generalized neural-network representation of high-dimensional potential-energy surfaces, Phys. Rev. Lett. 98, 146401 (2007).
  9. A. P. Bartók, R. Kondor, and G. Csányi, On representing chemical environments, Phys. Rev. B 87, 184115 (2013).
  10. R. Drautz, Atomic cluster expansion for accurate and transferable interatomic potentials, Phys. Rev. B 99, 014104 (2019).
  11. M. A. Wood and A. P. Thompson, Extending the accuracy of the SNAP interatomic potential form, J. Chem. Phys. 148, 241721 (2018).
  12. G. P. P. Pun and Y. Mishin, Embedded-atom potential for hcp and fcc cobalt, Phys. Rev. B 86, 134116 (2012).
  13. B. Farkaš and N. H. de Leeuw, Towards a morphology of cobalt nanoparticles: size and strain effects, Nanotechnology 31, 195711 (2020).
  14. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996a).
  15. G. Kresse and J. Furthmüller, Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science 6, 15 (1996b).
  16. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996).
  17. D. C. Langreth and M. J. Mehl, Beyond the local-density approximation in calculations of ground-state electronic properties, Phys. Rev. B 28, 1809 (1983).
  18. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59, 1758 (1999).
  19. M. Methfessel and A. T. Paxton, High-precision sampling for brillouin-zone integration in metals, Phys. Rev. B 40, 3616 (1989).
  20. Y. Mishin, Machine-learning interatomic potentials for materials science, Acta Materialia 214, 116980 (2021).
  21. W. B. Pearson, A handbook of lattice spacings and structures of metals and alloys, 1st ed., Vol. 2 (Pergamon Press, Oxford, 1967).
  22. G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties, 2nd ed. (The MIT Press, 1971).
  23. H. J. McSkimin, Measurement of the elastic constants of single crystal cobalt, Journal of Applied Physics 26, 406 (1955).
  24. D. E. Laughlin and K. Hono, Physical Metallurgy, 5th ed. (Elsevier, 2015).
  25. K. Schäfer, Selected values of thermodynamic properties of metals and alloys, Angewandte Chemie 77, 468 (1965).
  26. A. Fernández Guillermet, Critical evaluation of the thermodynamic properties of cobalt, Int J Thermophys 8, 481 (1987).
  27. W. M. Haynes, CRC Handbook of Chemistry and Physics (Taylor & F, 2014).
  28. W. Gale and T. Totemeier, Smithells Metals Reference Book, 8th ed. (Elsevier, 2004).
  29. H. Ullmaier, ed., Atomic Defects in Metals, Vol. 25 (Springer-Verlag, Berlin, Heidelberg, 1991).
  30. M. R. LaBrosse, L. Chen, and J. K. Johnson, First principles study of vacancy and tungsten diffusion in fcc cobalt, Modelling Simul. Mater. Sci. Eng. 18, 015008 (2009).
  31. C. Kittel, Introduction to solid state physics, 8th ed. (Wiley, Hoboken, NJ, 2005).
  32. P. Lazar and M. Otyepka, Accurate surface energies from first principles, Phys. Rev. B 91, 115402 (2015).
  33. K. Parlinski, Z. Q. Li, and Y. Kawazoe, First-principles determination of the soft mode in cubic ZrO2, Phys. Rev. Lett. 78, 4063 (1997).
  34. M. Boudart, Catalysis by supported metals, in Advances in Catalysis, Vol. 20, edited by D. D. Eley, H. Pines, and P. B. Weisz (Academic Press, 1969) pp. 153–166.
  35. C. Mottet, G. Tréglia, and B. Legrand, New magic numbers in metallic clusters: an unexpected metal dependence, Surface Science 383, L719 (1997).
  36. S. L. Lai, J. R. A. Carlsson, and L. H. Allen, Melting point depression of Al clusters generated during the early stages of film growth: Nanocalorimetry measurements, Applied Physics Letters 72, 1098 (1998).
  37. Ph. Buffat and J.-P. Borel, Size effect on the melting temperature of gold particles, Phys. Rev. A 13, 2287 (1976).
  38. P. Labastie and F. Calvo, Thermodynamics and solid—liquid transitions, in Nanomaterials and Nanochemistry (Springer, Berlin, Heidelberg, 2008) pp. 55–87.
  39. The URL will be active once the paper is published.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 3 likes about this paper.