On regularity and rigidity of $2\times 2$ differential inclusions into non-elliptic curves (2404.02121v1)
Abstract: We study differential inclusions $Du\in \Pi$ in an open set $\Omega\subset\mathbb R2$, where $\Pi\subset \mathbb R{2\times 2}$ is a compact connected $C2$ curve without rank-one connections, but non-elliptic: tangent lines to $\Pi$ may have rank-one connections, so that classical regularity and rigidity results do not apply. For a wide class of such curves $\Pi$, we show that $Du$ is locally Lipschitz outside a discrete set, and is rigidly characterized around each singularity. Moreover, in the partially elliptic case where at least one tangent line to $\Pi$ has no rank-one connections, or under some topological restrictions on the tangent bundle of $\Pi$, there are no singularities. This goes well beyond previously known particular cases related to Burgers' equation and to the Aviles-Giga functional. The key is the identification and appropriate use of a general underlying structure: an infinite family of conservation laws, called entropy productions in reference to the theory of scalar conservation laws.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.