Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

The lattice structure of negative Sobolev and extrapolation spaces (2404.02116v3)

Published 2 Apr 2024 in math.FA

Abstract: It is well-known that the Sobolev spaces $W{k,p}(\mathbb Rd)$ are vector lattices with respect to the pointwise almost everywhere order if $k \in {0,1}$, but not if $k \ge 2$. In this note, we consider negative $k$ and show that the span of the positive cone in $W{k,p}(\mathbb Rd)$ is a vector lattice in this case. We also prove a related abstract result: if $(T(t)){t \in [0,\infty)}$ is a positive $C_0$-semigroup on a Banach lattice $X$ with order continuous norm, then the span of the cone $X{-1,+}$ in the extrapolation space $X_{-1}$ is a vector lattice. This complements results obtained by B\'atkai, Jacob, Wintermayr, and Voigt in the context of perturbation theory and provides additional context for the theory of infinite-dimensional positive systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. Cones and duality, volume 84 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2007. doi:10.1090/gsm/084.
  2. Equivalent complete norms and positivity. Arch. Math., 92(5):414–427, 2009. doi:10.1007/s00013-009-3190-6.
  3. Limit-case admissibility for positive infinite-dimensional systems. 2024. Preprint. arXiv:2404.01275v1.
  4. Perturbations of positive semigroups on AM-spaces. Semigroup Forum, 96(2):333–347, 2018. doi:10.1007/s00233-017-9879-0.
  5. Positive operator semigroups: From finite to infinite dimensions, volume 257. Basel: Springer (Birkhäuser), 2017. doi:10.1007/978-3-319-42813-0.
  6. One-parameter semigroups for linear evolution equations, volume 194. Berlin: Springer, 2000. doi:10.1007/b97696.
  7. Yassine El Gantouh. Positivity of infinite-dimensional linear systems. 2023. Preprint. arXiv:2208.10617v3.
  8. Yassine El Gantouh. Well-posedness and stability of a class of linear systems. Positivity, 28(2):20, 2024. Id/No 16. doi:10.1007/s11117-024-01035-6.
  9. Elliptic partial differential equations of second order. Class. Math. Berlin: Springer, reprint of the 1998 ed. edition, 2001.
  10. Jochen Glück. On disjointness, bands and projections in partially ordered vector spaces. In Positivity and its applications, Trends Math., pages 141–171. Birkhäuser/Springer, Cham, 2021. doi:10.1007/978-3-030-70974-7_7.
  11. Peter Meyer-Nieberg. Banach lattices. Berlin, Heidelberg: Springer-Verlag, 1991. doi:10.1007/978-3-642-76724-1.
  12. Rainer Nagel, editor. One-parameter semigroups of positive operators, volume 1184 of Lecture Notes in Mathematics. Cham: Springer, 1986. doi:10.1007/BFb0074922.
  13. A decomposition by non-negative functions in the Sobolev space Wk,1superscript𝑊𝑘1W^{k,1}italic_W start_POSTSUPERSCRIPT italic_k , 1 end_POSTSUPERSCRIPT. Indiana Univ. Math. J., 69(1):151–169, 2020. doi:10.1512/iumj.2020.69.8237.
  14. Witold Wnuk. Banach lattices with order continuous norms. Advanced Topics in Mathematics. Warsaw: Polish Scientific Publishers PWN, 1999.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.