The lattice structure of negative Sobolev and extrapolation spaces (2404.02116v3)
Abstract: It is well-known that the Sobolev spaces $W{k,p}(\mathbb Rd)$ are vector lattices with respect to the pointwise almost everywhere order if $k \in {0,1}$, but not if $k \ge 2$. In this note, we consider negative $k$ and show that the span of the positive cone in $W{k,p}(\mathbb Rd)$ is a vector lattice in this case. We also prove a related abstract result: if $(T(t)){t \in [0,\infty)}$ is a positive $C_0$-semigroup on a Banach lattice $X$ with order continuous norm, then the span of the cone $X{-1,+}$ in the extrapolation space $X_{-1}$ is a vector lattice. This complements results obtained by B\'atkai, Jacob, Wintermayr, and Voigt in the context of perturbation theory and provides additional context for the theory of infinite-dimensional positive systems.
- Cones and duality, volume 84 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2007. doi:10.1090/gsm/084.
- Equivalent complete norms and positivity. Arch. Math., 92(5):414–427, 2009. doi:10.1007/s00013-009-3190-6.
- Limit-case admissibility for positive infinite-dimensional systems. 2024. Preprint. arXiv:2404.01275v1.
- Perturbations of positive semigroups on AM-spaces. Semigroup Forum, 96(2):333–347, 2018. doi:10.1007/s00233-017-9879-0.
- Positive operator semigroups: From finite to infinite dimensions, volume 257. Basel: Springer (Birkhäuser), 2017. doi:10.1007/978-3-319-42813-0.
- One-parameter semigroups for linear evolution equations, volume 194. Berlin: Springer, 2000. doi:10.1007/b97696.
- Yassine El Gantouh. Positivity of infinite-dimensional linear systems. 2023. Preprint. arXiv:2208.10617v3.
- Yassine El Gantouh. Well-posedness and stability of a class of linear systems. Positivity, 28(2):20, 2024. Id/No 16. doi:10.1007/s11117-024-01035-6.
- Elliptic partial differential equations of second order. Class. Math. Berlin: Springer, reprint of the 1998 ed. edition, 2001.
- Jochen Glück. On disjointness, bands and projections in partially ordered vector spaces. In Positivity and its applications, Trends Math., pages 141–171. Birkhäuser/Springer, Cham, 2021. doi:10.1007/978-3-030-70974-7_7.
- Peter Meyer-Nieberg. Banach lattices. Berlin, Heidelberg: Springer-Verlag, 1991. doi:10.1007/978-3-642-76724-1.
- Rainer Nagel, editor. One-parameter semigroups of positive operators, volume 1184 of Lecture Notes in Mathematics. Cham: Springer, 1986. doi:10.1007/BFb0074922.
- A decomposition by non-negative functions in the Sobolev space Wk,1superscript𝑊𝑘1W^{k,1}italic_W start_POSTSUPERSCRIPT italic_k , 1 end_POSTSUPERSCRIPT. Indiana Univ. Math. J., 69(1):151–169, 2020. doi:10.1512/iumj.2020.69.8237.
- Witold Wnuk. Banach lattices with order continuous norms. Advanced Topics in Mathematics. Warsaw: Polish Scientific Publishers PWN, 1999.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.