QDarts: A Quantum Dot Array Transition Simulator for finding charge transitions in the presence of finite tunnel couplings, non-constant charging energies and sensor dots (2404.02064v3)
Abstract: We present QDarts, an efficient simulator for realistic charge stability diagrams of quantum dot array (QDA) devices in equilibrium states. It allows for pinpointing the location of concrete charge states and their transitions in a high-dimensional voltage space (via arbitrary two-dimensional cuts through it), and includes effects of finite tunnel coupling, non-constant charging energy and a simulation of noisy sensor dots. These features enable close matching of various experimental results in the literature, and the package hence provides a flexible tool for testing QDA experiments, as well as opening the avenue for developing new methods of device tuning.
- Semiconductor spin qubits, Rev. Mod. Phys. 95, 025003 (2023), 10.1103/RevModPhys.95.025003.
- Spins in few-electron quantum dots, Reviews of Modern Physics 79(4), 1217–1265 (2007), 10.1103/revmodphys.79.1217.
- Qdarts, URL https://github.com/condensedAI/QDarts.
- T. Ihn, Semiconductor Nanostructures: Quantum States and Electronic Transport, Oxford University Press, ISBN 978-0-19-953442-5, 10.1093/acprof:oso/9780199534425.001.0001 (2009).
- Electrostatically defined serial triple quantum dot charged with few electrons, Phys. Rev. B 76, 075306 (2007), 10.1103/PhysRevB.76.075306.
- B. Weber and J. P. Zwolak, Qda2: A principled approach to automatically annotating charge stability diagrams, arXiv preprint arXiv:2312.11206 (2023).
- Learning coulomb diamonds in large quantum dot arrays, SciPost Physics 13(4), 084 (2022).
- Measurements of capacitive coupling within a quadruple-quantum-dot array, Physical Review Applied 12(6) (2019), 10.1103/physrevapplied.12.064049.
- Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot, Nature Communications 11(1) (2020), 10.1038/s41467-019-14053-w.
- Loading a quantum-dot based “qubyte” register, npj Quantum Information 5(1), 29 (2019).
- A machine learning approach for automated fine-tuning of semiconductor spin qubits, Applied Physics Letters 114(13) (2019), 10.1063/1.5088412.
- Universal control of a six-qubit quantum processor in silicon, Nature 609(7929), 919–924 (2022), 10.1038/s41586-022-05117-x.
- Statistics of coulomb blockade peak spacings, Physical review letters 80(20), 4522 (1998).
- Charge-noise spectroscopy of si/sige quantum dots via dynamically-decoupled exchange oscillations, Nature Communications 13(1) (2022), 10.1038/s41467-022-28519-x.
- S. Das Sarma, X. Wang and S. Yang, Hubbard model description of silicon spin qubits: Charge stability diagram and tunnel coupling in si double quantum dots, Physical Review B 83(23) (2011), 10.1103/physrevb.83.235314.
- C. W. J. Beenakker, Theory of coulomb-blockade oscillations in the conductance of a quantum dot, Phys. Rev. B 44, 1646 (1991), 10.1103/PhysRevB.44.1646.
- A. D. Pia, S. S. Dey and M. Molinaro, Mixed-integer quadratic programming is in np, Mathematical Programming 162, 225 (2017).
- Qdsim, URL https://gitlab.com/QMAI/papers/qdsim/.
- Simulation of charge stability diagrams for automated tuning solutions (simcats) 10.36227/techrxiv.171173496.61131656/v1.
- F. Hader, Simcats, URL https://github.com/f-hader/SimCATS.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.