Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Improving Quantum Approximate Optimization by Noise-Directed Adaptive Remapping (2404.01412v2)

Published 1 Apr 2024 in quant-ph

Abstract: We present Noise-Directed Adaptive Remapping (NDAR), a heuristic algorithm for approximately solving binary optimization problems by leveraging certain types of noise. We consider access to a noisy quantum processor with dynamics that features a global attractor state. In a standard setting, such noise can be detrimental to the quantum optimization performance. Our algorithm bootstraps the noise attractor state by iteratively gauge-transforming the cost-function Hamiltonian in a way that transforms the noise attractor into higher-quality solutions. The transformation effectively changes the attractor into a higher-quality solution of the Hamiltonian based on the results of the previous step. The end result is that noise aids variational optimization, as opposed to hindering it. We present an improved Quantum Approximate Optimization Algorithm (QAOA) runs in experiments on Rigetti's quantum device. We report approximation ratios $0.9$-$0.96$ for random, fully connected graphs on $n=82$ qubits, using only depth $p=1$ QAOA with NDAR. This compares to $0.34$-$0.51$ for standard $p=1$ QAOA with the same number of function calls.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (69)
  1. F. B. Maciejewski, S. Hadfield, B. Hall, M. Hodson, M. Dupont, B. Evert, J. Sud, M. S. Alam, Z. Wang, S. Jeffrey, B. Sundar, P. A. Lott, S. Grabbe, E. G. Rieffel, M. J. Reagor, and D. Venturelli, “Design and execution of quantum circuits using tens of superconducting qubits and thousands of gates for dense ising optimization problems,” 2023.
  2. Z. Cai, R. Babbush, S. C. Benjamin, S. Endo, W. J. Huggins, Y. Li, J. R. McClean, and T. E. O’Brien, “Quantum error mitigation,” 2023.
  3. E. Knill and R. Laflamme, “Theory of quantum error-correcting codes,” Physical Review A, vol. 55, no. 2, p. 900, 1997.
  4. J. Roffe, “Quantum error correction: an introductory guide,” Contemporary Physics, vol. 60, no. 3, pp. 226–245, 2019.
  5. E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization algorithm,” 2014.
  6. S. Hadfield, Z. Wang, B. O’gorman, E. G. Rieffel, D. Venturelli, and R. Biswas, “From the quantum approximate optimization algorithm to a quantum alternating operator ansatz,” Algorithms, vol. 12, no. 2, p. 34, 2019.
  7. S. Boixo, T. Albash, F. M. Spedalieri, N. Chancellor, and D. A. Lidar, “Experimental signature of programmable quantum annealing,” Nature communications, vol. 4, no. 1, p. 2067, 2013.
  8. A. D. King and C. C. McGeoch, “Algorithm engineering for a quantum annealing platform,” arXiv preprint arXiv:1410.2628, 2014.
  9. A. Perdomo-Ortiz, J. Fluegemann, R. Biswas, and V. N. Smelyanskiy, “A performance estimator for quantum annealers: Gauge selection and parameter setting,” arXiv preprint arXiv:1503.01083, 2015.
  10. A. Perdomo-Ortiz, B. O’Gorman, J. Fluegemann, R. Biswas, and V. N. Smelyanskiy, “Determination and correction of persistent biases in quantum annealers,” Scientific Reports, vol. 6, no. 1, p. 18628, 2016.
  11. K. L. Pudenz, “Parameter setting for quantum annealers,” in 2016 IEEE high performance extreme computing conference (HPEC), pp. 1–6, IEEE, 2016.
  12. E. Pelofske, G. Hahn, and H. Djidjev, “Optimizing the spin reversal transform on the d-wave 2000q,” in 2019 IEEE International Conference on Rebooting Computing (ICRC), pp. 1–8, IEEE, 2019.
  13. A. Barbosa, E. Pelofske, G. Hahn, and H. N. Djidjev, “Optimizing embedding-related quantum annealing parameters for reducing hardware bias,” in Parallel Architectures, Algorithms and Programming: 11th International Symposium, PAAP 2020, Shenzhen, China, December 28–30, 2020, Proceedings 11, pp. 162–173, Springer, 2021.
  14. Z. G. Izquierdo, S. Grabbe, S. Hadfield, J. Marshall, Z. Wang, and E. Rieffel, “Ferromagnetically shifting the power of pausing,” Physical Review Applied, vol. 15, no. 4, p. 044013, 2021.
  15. D-Wave Systems, “QPU Solvers: Spin-Reversal (Gauge) Transforms.” https://docs.dwavesys.com/docs/latest/handbook_qpu.html#spin-reversal-gauge-transforms, 2023.
  16. Google Quantum AI, “Qubit picking.” https://quantumai.google/cirq/hardware/qubit_picking, 2023.
  17. IBM Quantum, “Noiseadaptivelayout.” https://docs.quantum.ibm.com/api/qiskit/qiskit.transpiler.passes.NoiseAdaptiveLayout, 2023.
  18. P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, and M. Martonosi, “Noise-adaptive compiler mappings for noisy intermediate-scale quantum computers,” in Proceedings of the twenty-fourth international conference on architectural support for programming languages and operating systems, pp. 1015–1029, 2019.
  19. Y. Ji, K. F. Koenig, and I. Polian, “Improving the performance of digitized counterdiabatic quantum optimization via algorithm-oriented qubit mapping,” arXiv preprint arXiv:2311.14624, 2023.
  20. A. Matsuo, S. Yamashita, and D. J. Egger, “A sat approach to the initial mapping problem in swap gate insertion for commuting gates,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, p. 2022EAP1159, 2023.
  21. R. Shaydulin, S. Hadfield, T. Hogg, and I. Safro, “Classical symmetries and the Quantum Approximate Optimization Algorithm,” Quantum Information Processing, vol. 20, oct 2021.
  22. A. Galda, X. Liu, D. Lykov, Y. Alexeev, and I. Safro, “Transferability of optimal qaoa parameters between random graphs,” in 2021 IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 171–180, IEEE, 2021.
  23. R. Shaydulin and A. Galda, “Error mitigation for deep quantum optimization circuits by leveraging problem symmetries,” in 2021 IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 291–300, IEEE, 2021.
  24. M. Alam, A. Ash-Saki, and S. Ghosh, “Analysis of quantum approximate optimization algorithm under realistic noise in superconducting qubits,” arXiv preprint arXiv:1907.09631, 2019.
  25. C. Xue, Z.-Y. Chen, Y.-C. Wu, and G.-P. Guo, “Effects of quantum noise on quantum approximate optimization algorithm,” Chinese Physics Letters, vol. 38, no. 3, p. 030302, 2021.
  26. J. Marshall, F. Wudarski, S. Hadfield, and T. Hogg, “Characterizing local noise in qaoa circuits,” IOP SciNotes, vol. 1, no. 2, p. 025208, 2020.
  27. F. B. Maciejewski, F. Baccari, Z. Zimborás, and M. Oszmaniec, “Modeling and mitigation of cross-talk effects in readout noise with applications to the quantum approximate optimization algorithm,” Quantum, vol. 5, p. 464, June 2021.
  28. L. Zhu, H. L. Tang, G. S. Barron, F. A. Calderon-Vargas, N. J. Mayhall, E. Barnes, and S. E. Economou, “Adaptive quantum approximate optimization algorithm for solving combinatorial problems on a quantum computer,” Phys. Rev. Res., vol. 4, p. 033029, Jul 2022.
  29. D. J. Egger, J. Mareček, and S. Woerner, “Warm-starting quantum optimization,” Quantum, vol. 5, p. 479, 2021.
  30. R. Tate, M. Farhadi, C. Herold, G. Mohler, and S. Gupta, “Bridging classical and quantum with sdp initialized warm-starts for qaoa,” ACM Transactions on Quantum Computing, vol. 4, no. 2, pp. 1–39, 2023.
  31. R. Tate, J. Moondra, B. Gard, G. Mohler, and S. Gupta, “Warm-started qaoa with custom mixers provably converges and computationally beats goemans-williamson’s max-cut at low circuit depths,” Quantum, vol. 7, p. 1121, 2023.
  32. J. Wurtz and P. J. Love, “Classically optimal variational quantum algorithms,” IEEE Transactions on Quantum Engineering, vol. 2, pp. 1–7, 2021.
  33. N. Mohseni, P. L. McMahon, and T. Byrnes, “Ising machines as hardware solvers of combinatorial optimization problems,” Nature Reviews Physics, vol. 4, no. 6, pp. 363–379, 2022.
  34. Springer Science & Business Media, 2012.
  35. A. Lucas, “Ising formulations of many np problems,” Frontiers in physics, vol. 2, p. 74887, 2014.
  36. S. Hadfield, “On the representation of Boolean and real functions as Hamiltonians for quantum computing,” ACM Transactions on Quantum Computing, vol. 2, no. 4, pp. 1–21, 2021.
  37. D. E. B. Neira, R. Brown, P. Sathe, F. Wudarski, M. Pavone, E. G. Rieffel, and D. Venturelli, “Benchmarking the operation of quantum heuristics and ising machines: Scoring parameter setting strategies on optimization applications,” 2024.
  38. W. Vinci and D. A. Lidar, “Optimally stopped optimization,” Physical Review Applied, vol. 6, no. 5, p. 054016, 2016.
  39. T. Giurgica-Tiron, Y. Hindy, R. LaRose, A. Mari, and W. J. Zeng, “Digital zero noise extrapolation for quantum error mitigation,” in 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 306–316, IEEE, 2020.
  40. D. Sherrington and S. Kirkpatrick, “Solvable model of a spin-glass,” Physical review letters, vol. 35, no. 26, p. 1792, 1975.
  41. J. Bergstra, D. Yamins, and D. Cox, “Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures,” in Proceedings of the 30th International Conference on Machine Learning (S. Dasgupta and D. McAllester, eds.), vol. 28 of Proceedings of Machine Learning Research, (Atlanta, Georgia, USA), pp. 115–123, PMLR, 17–19 Jun 2013.
  42. T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-generation hyperparameter optimization framework,” in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.
  43. T. F. Rønnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov, D. Wecker, J. M. Martinis, D. A. Lidar, and M. Troyer, “Defining and detecting quantum speedup,” science, vol. 345, no. 6195, pp. 420–424, 2014.
  44. K. Inaba, T. Inagaki, K. Igarashi, S. Utsunomiya, T. Honjo, T. Ikuta, K. Enbutsu, T. Umeki, R. Kasahara, K. Inoue, et al., “Potts model solver based on hybrid physical and digital architecture,” Communications Physics, vol. 5, no. 1, p. 137, 2022.
  45. S. Bravyi, A. Kliesch, R. Koenig, and E. Tang, “Hybrid quantum-classical algorithms for approximate graph coloring,” Quantum, vol. 6, p. 678, 2022.
  46. A. B. Özgüler and D. Venturelli, “Numerical gate synthesis for quantum heuristics on bosonic quantum processors,” Frontiers in Physics, vol. 10, p. 900612, 2022.
  47. T. S. Cubitt, “Dissipative ground state preparation and the dissipative quantum eigensolver,” arXiv preprint arXiv:2303.11962, 2023.
  48. Z. Ding, L. Lin, et al., “Single-ancilla ground state preparation via lindbladians,” arXiv preprint arXiv:2308.15676, 2023.
  49. M. J. Kastoryano, F. G. Brandão, A. Gilyén, et al., “Quantum thermal state preparation,” arXiv preprint arXiv:2303.18224, 2023.
  50. X. Mi, A. Michailidis, S. Shabani, K. Miao, P. Klimov, J. Lloyd, E. Rosenberg, R. Acharya, I. Aleiner, T. Andersen, et al., “Stable quantum-correlated many-body states through engineered dissipation,” Science, vol. 383, no. 6689, pp. 1332–1337, 2024.
  51. C.-F. Chen, H.-Y. Huang, J. Preskill, and L. Zhou, “Local minima in quantum systems,” arXiv preprint arXiv:2309.16596, 2023.
  52. A. Sannia, F. Tacchino, I. Tavernelli, G. L. Giorgi, and R. Zambrini, “Engineered dissipation to mitigate barren plateaus,” arXiv preprint arXiv:2310.15037, 2023.
  53. R. LaRose, E. Rieffel, and D. Venturelli, “Mixer-phaser ansätze for quantum optimization with hard constraints,” Quantum Machine Intelligence, vol. 4, no. 2, p. 17, 2022.
  54. R. Herrman, P. C. Lotshaw, J. Ostrowski, T. S. Humble, and G. Siopsis, “Multi-angle quantum approximate optimization algorithm,” Scientific Reports, vol. 12, no. 1, p. 6781, 2022.
  55. J. Wurtz and P. J. Love, “Counterdiabaticity and the quantum approximate optimization algorithm,” Quantum, vol. 6, p. 635, Jan. 2022.
  56. A. B. Magann, K. M. Rudinger, M. D. Grace, and M. Sarovar, “Feedback-based quantum optimization,” Physical Review Letters, vol. 129, no. 25, p. 250502, 2022.
  57. X. Liu, A. Angone, R. Shaydulin, I. Safro, Y. Alexeev, and L. Cincio, “Layer vqe: A variational approach for combinatorial optimization on noisy quantum computers,” IEEE Transactions on Quantum Engineering, vol. 3, p. 1–20, 2022.
  58. K. Blekos, D. Brand, A. Ceschini, C. Chou, R. Li, K. Pandya, and A. Summer, “A review on quantum approximate optimization algorithm and its variants.,” arXiv preprint arXiv:2306.09198.
  59. A. Wilkie, I. Gaidai, J. Ostrowski, and R. Herrman, “Qaoa with random and subgraph driver hamiltonians,” arXiv preprint arXiv:2402.18412, 2024.
  60. S. Bravyi, A. Kliesch, R. Koenig, and E. Tang, “Obstacles to variational quantum optimization from symmetry protection,” Physical Review Letters, vol. 125, no. 26, p. 260505, 2020.
  61. M. Dupont, B. Evert, M. J. Hodson, B. Sundar, S. Jeffrey, Y. Yamaguchi, D. Feng, F. B. Maciejewski, S. Hadfield, M. S. Alam, et al., “Quantum-enhanced greedy combinatorial optimization solver,” Science Advances, vol. 9, no. 45, p. eadi0487, 2023.
  62. L. T. Brady and S. Hadfield, “Iterative quantum algorithms for maximum independent set: a tale of low-depth quantum algorithms,” arXiv preprint arXiv:2309.13110, 2023.
  63. M. Dupont and B. Sundar, “Extending relax-and-round combinatorial optimization solvers with quantum correlations,” Physical Review A, vol. 109, Jan. 2024.
  64. M. Sciorilli, L. Borges, T. L. Patti, D. García-Martín, G. Camilo, A. Anandkumar, and L. Aolita, “Towards large-scale quantum optimization solvers with few qubits,” arXiv preprint arXiv:2401.09421, 2024.
  65. Y. Hirata, M. Nakanishi, S. Yamashita, and Y. Nakashima, “An efficient method to convert arbitrary quantum circuits to ones on a linear nearest neighbor architecture,” in 2009 Third International Conference on Quantum, Nano and Micro Technologies, pp. 26–33, 2009.
  66. Q. A. team and collaborators, “qsim,” Sept. 2020.
  67. S. V. Isakov, D. Kafri, O. Martin, C. V. Heidweiller, W. Mruczkiewicz, M. P. Harrigan, N. C. Rubin, R. Thomson, M. Broughton, K. Kissell, E. Peters, E. Gustafson, A. C. Y. Li, H. Lamm, G. Perdue, A. K. Ho, D. Strain, and S. Boixo, “Simulations of quantum circuits with approximate noise using qsim and cirq,” 2021.
  68. F. Baccari, C. Gogolin, P. Wittek, and A. Ací n, “Verifying the output of quantum optimizers with ground-state energy lower bounds,” Physical Review Research, vol. 2, oct 2020.
  69. S. Mandra, A. Akbari Asanjan, L. Brady, A. Lott, and D. E. Bernal Neira, “PySA: Fast Simulated Annealing in Native Python,” 2023.
Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 5 likes.

Upgrade to Pro to view all of the tweets about this paper: