Papers
Topics
Authors
Recent
2000 character limit reached

Beyond Linear Response: Equivalence between Thermodynamic Geometry and Optimal Transport

Published 1 Apr 2024 in cond-mat.stat-mech | (2404.01286v4)

Abstract: A fundamental result of thermodynamic geometry is that the optimal, minimal-work protocol that drives a nonequilibrium system between two thermodynamic states in the slow-driving limit is given by a geodesic of the friction tensor, a Riemannian metric defined on control space. For overdamped dynamics in arbitrary dimensions, we demonstrate that thermodynamic geometry is equivalent to $L2$ optimal transport geometry defined on the space of equilibrium distributions corresponding to the control parameters. We show that obtaining optimal protocols past the slow-driving or linear response regime is computationally tractable as the sum of a friction tensor geodesic and a counterdiabatic term related to the Fisher information metric. These geodesic-counterdiabatic optimal protocols are exact for parameteric harmonic potentials, reproduce the surprising non-monotonic behavior recently discovered in linearly-biased double well optimal protocols, and explain the ubiquitous discontinuous jumps observed at the beginning and end times.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.