Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Energy, strength, and alpha width measurements of $E_{\rm{c.m.}} = 1323$ and $1487$ keV resonances in $^{15}$N($α,γ$)$^{19}$F (2404.01271v1)

Published 1 Apr 2024 in nucl-ex

Abstract: The ${15}$N($\alpha,\gamma$)${19}$F reaction produces ${19}$F in asymptotic giant branch (AGB) stars, where the low energy tails of two resonances at $E_{\rm{c.m.}} = 1323 \pm 2$ and $1487 \pm 1.7$ keV are estimated to contribute about $30\%$ of the total reaction rate in these environments. However, recent measurements have shown discrepancies in the energies, the strengths, and the corresponding alpha widths of these two resonances, resulting in an increase in the systematic uncertainty of the extrapolated cross section to helium burning energies. With this motivation, we have undertaken new measurements of the ${15}$N$(\alpha,\gamma){19}$F at the University of Notre Dame Nuclear Science Laboratory. The setup consisted of an alpha particle beam impinged on a solid Ti${15}$N target with gamma-ray spectroscopy accomplished using a high purity germanium detector. Using the Doppler corrected gamma-ray energies, we confirmed the lower resonance energy to be $1321.6 \pm 0.6$ keV and found a value for the higher one of $1479.4 \pm 0.6$ keV that is more consistent with those found from previous elastic scattering studies. We found that the resonance strengths for both were consistent with most values found in the literature, but a larger alpha width has been recommended for the $E_{\rm{c.m.}} = 1487$ keV resonance. The larger alpha width suggests a reaction rate increase of about $15\%$ at temperatures $T < 0.1$ GK relevant to low mass AGB stars. The impact of the increased reaction rate requires further investigations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. K. T. Koga and E. F. Rose-Koga, Fluorine in the Earth and the solar system, where does it come from and can it be found?, Comptes Rendus Chimie 21, 749 (2018).
  2. S. E. Woosley and W. C. Haxton, Supernova neutrinos, neutral currents and the origin of fluorine, Nature 334, 45 (1988).
  3. G. Meynet and M. Arnould, Synthesis of 1919{}^{19}start_FLOATSUPERSCRIPT 19 end_FLOATSUPERSCRIPTF in Wolf-Rayet stars, Astronomy & Astrophysics 355, 176 (2000).
  4. A. Jorissen, V. V. Smith, and D. L. Lambert, Fluorine in red giant stars: evidence for nucleosynthesis, Astronomy and Astrophysics 261, 164 (1992).
  5. A. Aprahamian, P. Collon, and M. Wiescher, The Nuclear Science Laboratory at the University of Notre Dame, Nuclear Physics News 24, 5 (2014), https://doi.org/10.1080/10619127.2014.882732 .
  6. P. C. Price, The radiative capture of alpha particles in N15superscriptN15{}^{15}\mathrm{N}start_FLOATSUPERSCRIPT 15 end_FLOATSUPERSCRIPT roman_N, Proceedings of the Physical Society. Section A 70, 661 (1957).
  7. C. W. Li, Nuclear Mass Determinations from Disintegration Energies: Oxygen to Sulfur, Phys. Rev. 88, 1038 (1952).
  8. J. W. Frost-Schenk, Alpha capture reactions for abundance observations in nuclear astrophysics, Ph.D. thesis, University of York (2020).
  9. W. R. Dixon and R. S. Storey, Radiative yield of the Eα=1.68⁢MeVsubscriptE𝛼1.68MeV\mathrm{E}_{\alpha}=1.68~{}\mathrm{MeV}roman_E start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT = 1.68 roman_MeV Resonance in the N15⁢(α,γ)19⁢FsuperscriptN15superscript𝛼𝛾19F{}^{15}\mathrm{N}(\alpha,\gamma)^{19}\mathrm{F}start_FLOATSUPERSCRIPT 15 end_FLOATSUPERSCRIPT roman_N ( italic_α , italic_γ ) start_POSTSUPERSCRIPT 19 end_POSTSUPERSCRIPT roman_F Reaction, Canadian Journal of Physics 49, 1714 (1971).
  10. P. D. Parker, N(α,γ)14{}^{14}(\alpha,\gamma)start_FLOATSUPERSCRIPT 14 end_FLOATSUPERSCRIPT ( italic_α , italic_γ )F1818{}^{18}start_FLOATSUPERSCRIPT 18 end_FLOATSUPERSCRIPT Reaction, Phys. Rev. 173, 1021 (1968).
  11. W. Dixon and R. Storey, Levels of F19superscriptF19{}^{19}\mathrm{F}start_FLOATSUPERSCRIPT 19 end_FLOATSUPERSCRIPT roman_F from the N15⁢(α,γ)19⁢FsuperscriptN15superscript𝛼𝛾19F{}^{15}\mathrm{N}(\alpha,\gamma)^{19}\mathrm{F}start_FLOATSUPERSCRIPT 15 end_FLOATSUPERSCRIPT roman_N ( italic_α , italic_γ ) start_POSTSUPERSCRIPT 19 end_POSTSUPERSCRIPT roman_F reaction for Eα=2.8−4.0⁢MeVsubscriptE𝛼2.84.0MeV\mathrm{E}_{\alpha}=2.8-4.0~{}\mathrm{MeV}roman_E start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT = 2.8 - 4.0 roman_MeV, Nuclear Physics A 284, 97 (1977).
  12. D. W. Bardayan, R. L. Kozub, and M. S. Smith, F19⁢αsuperscriptF19𝛼{}^{19}\mathrm{F}\phantom{\rule{3.00003pt}{0.0pt}}\alphastart_FLOATSUPERSCRIPT 19 end_FLOATSUPERSCRIPT roman_F italic_α widths and the F18+psuperscriptF18𝑝{}^{18}\mathrm{F}+pstart_FLOATSUPERSCRIPT 18 end_FLOATSUPERSCRIPT roman_F + italic_p reaction rates, Phys. Rev. C 71, 018801 (2005).
  13. F. Ajzenberg-Selove, Energy levels of light nuclei A = 18-20, Nuclear Physics A 190, 1 (1972).
  14. S. Devons and L. J. B. Goldfarb, Angular correlations, in Kernreaktionen III / Nuclear Reactions III (Springer Berlin Heidelberg, Berlin, Heidelberg, 1957) pp. 362–554.
  15. J. F. Ziegler, M. Ziegler, and J. Biersack, SRIM - the stopping and range of ions in matter (2010), Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268, 1818 (2010).
  16. C. Iliadis, Nuclear Physics of Stars (John Wiley & Sons, Ltd, 2015).
  17. C. Montanari and P. Dimitriou, The IAEA stopping power database, following the trends in stopping power of ions in matter, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 408, 50 (2017).
  18. R. Longland, RatesMC, https://github.com/rlongland/RatesMC (2024).
  19. F. Zijderhand and C. van der Leun, Strong M2 transitions, Nuclear Physics A 460, 181 (1986).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube