Papers
Topics
Authors
Recent
2000 character limit reached

Automatic Modulation Classification using a Waveform Signature (2404.01119v1)

Published 1 Apr 2024 in eess.SP

Abstract: Cognitive Radios (CRs) build upon Software Defined Radios (SDRs) to allow for autonomous reconfiguration of communication architectures. In recent years, CRs have been identified as an enabler for Dynamic Spectrum Access (DSA) applications in which secondary users opportunistically share licensed spectrum. A major challenge for DSA is accurately characterizing the spectral environment, which requires blind signal classification. Existing work in this area has focused on simplistic channel models; however, more challenging fading channels (e.g., frequency selective fading channels) cause existing methods to be computationally complex or insufficient. This paper develops a novel blind modulation classification algorithm, which uses a set of higher order statistics to overcome these challenges. The set of statistics forms a signature, which can either be used directly for classification or can be processed using big data analytical techniques, such as principle component analysis (PCA), to learn the environment. The algorithm is tested in simulation on both flat fading and selective fading channel models. Results of this blind classification algorithm are shown to improve upon those which use single value higher order statistical methods.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.