Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On the Synchronization Analysis of a Strong Competition Kuramoto Model (2404.01000v1)

Published 1 Apr 2024 in math.DS

Abstract: When modeling the classical Kuramoto model, one of the key features is the tendency to synchronize. Accordingly, the most well-adopted choice of the coupling function is the sine function. Due to the oddness of the sine function, the synchronized frequency would be the average of all the natural frequencies. In this article, we study the synchronization behaviors of the Kuramoto model with a pure competition coupling function. Namely, instead of the sine function, we choose $\max {0, \sin \theta }$ to be the coupling function. This indicates the relation of pure competition between oscillators. We prove asymptotical phase synchronization for identical oscillators and asymptotical frequency synchronization for non-identical oscillators under reasonable sufficient conditions. In particular, under our sufficient conditions, the synchronized frequency is the maximal frequency of all the natural frequencies. On the other hand, in the parameter regime which is out of the scope of the analysis of our theorems, it is possible that the synchronized frequency could be larger than the maximal frequency of the natural frequencies of all the oscillators. In this article, we also provide numerical experiments to support the analysis of our theorem and to demonstrate the aforementioned phenomenon.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube