Continuously tunable uniaxial strain control of van der Waals heterostructure devices (2404.00905v2)
Abstract: Uniaxial strain has been widely used as a powerful tool for investigating and controlling the properties of quantum materials. However, existing strain techniques have so far mostly been limited to use with bulk crystals. Although recent progress has been made in extending the application of strain to two-dimensional van der Waals (vdW) heterostructures, these techniques have been limited to optical characterization and extremely simple electrical device geometries. Here, we report a piezoelectric-based \textit{in situ} uniaxial strain technique enabling simultaneous electrical transport and optical spectroscopy characterization of dual-gated vdW heterostructure devices. Critically, our technique remains compatible with vdW heterostructure devices of arbitrary complexity fabricated on conventional silicon/silicon dioxide wafer substrates. We demonstrate a large and continuously tunable strain of up to $-0.15\%$ at millikelvin temperatures, with larger strain values also likely achievable. We quantify the strain transmission from the silicon wafer to the vdW heterostructure, and further demonstrate the ability of strain to modify the electronic properties of twisted bilayer graphene. Our technique provides a highly versatile new method for exploring the effect of uniaxial strain on both the electrical and optical properties of vdW heterostructures, and can be easily extended to include additional characterization techniques.
- C. W. Hicks, M. E. Barber, S. D. Edkins, D. O. Brodsky, and A. P. Mackenzie, “Piezoelectric-based apparatus for strain tuning,” Review of Scientific Instruments 85 (2014a).
- C. W. Hicks, D. O. Brodsky, E. A. Yelland, A. S. Gibbs, J. A. Bruin, M. E. Barber, S. D. Edkins, K. Nishimura, S. Yonezawa, Y. Maeno, et al., “Strong increase of Tcsubscript𝑇𝑐T_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT of Sr22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTRuO44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT under both tensile and compressive strain,” Science 344, 283–285 (2014b).
- A. Steppke, L. Zhao, M. E. Barber, T. Scaffidi, F. Jerzembeck, H. Rosner, A. S. Gibbs, Y. Maeno, S. H. Simon, A. P. Mackenzie, and C. W. Hicks, “Strong peak in Tcsubscript𝑇𝑐T_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT of Sr22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTRuO44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT under uniaxial pressure,” Science 355, eaaf9398 (2017).
- P. Malinowski, Q. Jiang, J. J. Sanchez, J. Mutch, Z. Liu, P. Went, J. Liu, P. J. Ryan, J.-W. Kim, and J.-H. Chu, “Suppression of superconductivity by anisotropic strain near a nematic quantum critical point,” Nature Physics 16, 1189–1193 (2020).
- T. Qian, M. H. Christensen, C. Hu, A. Saha, B. M. Andersen, R. M. Fernandes, T. Birol, and N. Ni, “Revealing the competition between charge density wave and superconductivity in CsV3Sb5subscriptCsV3subscriptSb5{{\mathrm{CsV}}_{3}\mathrm{Sb}}_{5}roman_CsV start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT roman_Sb start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT through uniaxial strain,” Phys. Rev. B 104, 144506 (2021).
- J. Mutch, W.-C. Chen, P. Went, T. Qian, I. Z. Wilson, A. Andreev, C.-C. Chen, and J.-H. Chu, “Evidence for a strain-tuned topological phase transition in ZrTe55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT,” Science advances 5, eaav9771 (2019).
- N. H. Jo, L.-L. Wang, P. P. Orth, S. L. Bud’ko, and P. C. Canfield, “Magnetoelastoresistance in WTe22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT: Exploring electronic structure and extremely large magnetoresistance under strain,” Proceedings of the National Academy of Sciences 116, 25524–25529 (2019).
- J. M. Bartlett, A. Steppke, S. Hosoi, H. Noad, J. Park, C. Timm, T. Shibauchi, A. P. Mackenzie, and C. W. Hicks, “Relationship between transport anisotropy and nematicity in FeSe,” Physical Review X 11, 021038 (2021).
- J. J. Sanchez, P. Malinowski, J. Mutch, J. Liu, J.-W. Kim, P. J. Ryan, and J.-H. Chu, “The transport-structural correspondence across the nematic phase transition probed by elasto X-ray diffraction,” Nature Materials 20, 1519–1524 (2021).
- M. Ghini, M. Bristow, J. C. A. Prentice, S. Sutherland, S. Sanna, A. A. Haghighirad, and A. I. Coldea, “Strain tuning of nematicity and superconductivity in single crystals of FeSe,” Phys. Rev. B 103, 205139 (2021).
- P. Wiecki, M. Frachet, A.-A. Haghighirad, T. Wolf, C. Meingast, R. Heid, and A. E. Böhmer, “Emerging symmetric strain response and weakening nematic fluctuations in strongly hole-doped iron-based superconductors,” Nature Communications 12, 4824 (2021).
- Y.-S. Li, R. Borth, C. Hicks, A. Mackenzie, and M. Nicklas, “Heat-capacity measurements under uniaxial pressure using a piezo-driven device,” Review of Scientific Instruments 91 (2020).
- M. S. Ikeda, J. A. Straquadine, A. T. Hristov, T. Worasaran, J. C. Palmstrom, M. Sorensen, P. Walmsley, and I. R. Fisher, “AC elastocaloric effect as a probe for thermodynamic signatures of continuous phase transitions,” Review of Scientific Instruments 90 (2019).
- Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, “Unconventional superconductivity in magic-angle graphene superlattices,” Nature 556, 43–50 (2018a).
- M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe, T. Taniguchi, D. Graf, A. F. Young, and C. R. Dean, “Tuning superconductivity in twisted bilayer graphene,” Science 363, 1059–1064 (2019a).
- S. Chen, M. He, Y.-H. Zhang, V. Hsieh, Z. Fei, K. Watanabe, T. Taniguchi, D. H. Cobden, X. Xu, C. R. Dean, et al., “Electrically tunable correlated and topological states in twisted monolayer-bilayer graphene,” Nature Physics 17, 374–380 (2021).
- Y. Cao, D. Rodan-Legrain, J. M. Park, N. F. Yuan, K. Watanabe, T. Taniguchi, R. M. Fernandes, L. Fu, and P. Jarillo-Herrero, “Nematicity and competing orders in superconducting magic-angle graphene,” Science 372, 264–271 (2021).
- Z. Fei, W. Zhao, T. A. Palomaki, B. Sun, M. K. Miller, Z. Zhao, J. Yan, X. Xu, and D. H. Cobden, “Ferroelectric switching of a two-dimensional metal,” Nature 560, 336–339 (2018).
- M. Serlin, C. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu, K. Watanabe, T. Taniguchi, L. Balents, and A. Young, “Intrinsic quantized anomalous Hall effect in a moiré heterostructure,” Science 367, 900–903 (2020).
- H. Park, J. Cai, E. Anderson, Y. Zhang, J. Zhu, X. Liu, C. Wang, W. Holtzmann, C. Hu, Z. Liu, et al., “Observation of fractionally quantized anomalous Hall effect,” Nature 622, 74–79 (2023).
- J. S. Bunch, A. M. Van Der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Electromechanical resonators from graphene sheets,” Science 315, 490–493 (2007).
- H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund Jr, S. T. Pantelides, and K. I. Bolotin, “Bandgap engineering of strained monolayer and bilayer MoS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT,” Nano letters 13, 3626–3630 (2013).
- D. Lloyd, X. Liu, J. W. Christopher, L. Cantley, A. Wadehra, B. L. Kim, B. B. Goldberg, A. K. Swan, and J. S. Bunch, “Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT,” Nano letters 16, 5836–5841 (2016).
- S. Deng, A. V. Sumant, and V. Berry, “Strain engineering in two-dimensional nanomaterials beyond graphene,” Nano Today 22, 14–35 (2018).
- W. Hou, A. Azizimanesh, A. Sewaket, T. Peña, C. Watson, M. Liu, H. Askari, and S. M. Wu, “Strain-based room-temperature non-volatile MoTe22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT ferroelectric phase change transistor,” Nature nanotechnology 14, 668–673 (2019).
- Z. Dai, L. Liu, and Z. Zhang, “Strain engineering of 2D materials: issues and opportunities at the interface,” Advanced Materials 31, 1805417 (2019).
- J. M. Kim, M. F. Haque, E. Y. Hsieh, S. M. Nahid, I. Zarin, K.-Y. Jeong, J.-P. So, H.-G. Park, and S. Nam, “Strain engineering of low-dimensional materials for emerging quantum phenomena and functionalities,” Advanced Materials 35, 2107362 (2023).
- C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, et al., “Boron nitride substrates for high-quality graphene electronics,” Nature nanotechnology 5, 722–726 (2010).
- K. Kim, M. Yankowitz, B. Fallahazad, S. Kang, H. C. Movva, S. Huang, S. Larentis, C. M. Corbet, T. Taniguchi, K. Watanabe, et al., “van der waals heterostructures with high accuracy rotational alignment,” Nano letters 16, 1989–1995 (2016).
- M. Yankowitz, Q. Ma, P. Jarillo-Herrero, and B. J. LeRoy, “van der waals heterostructures combining graphene and hexagonal boron nitride,” Nature Reviews Physics 1, 112–125 (2019b).
- J. Park, J. M. Bartlett, H. M. Noad, A. L. Stern, M. E. Barber, M. König, S. Hosoi, T. Shibauchi, A. P. Mackenzie, A. Steppke, et al., “Rigid platform for applying large tunable strains to mechanically delicate samples,” Review of Scientific Instruments 91 (2020).
- Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, et al., “Correlated insulator behaviour at half-filling in magic-angle graphene superlattices,” Nature 556, 80–84 (2018b).
- L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342, 614–617 (2013).
- M. A. Hopcroft, W. D. Nix, and T. W. Kenny, “What is the Young’s modulus of silicon?” Journal of microelectromechanical systems 19, 229–238 (2010).
- L. Wang, S. Zihlmann, A. Baumgartner, J. Overbeck, K. Watanabe, T. Taniguchi, P. Makk, and C. Schonenberger, “In situ strain tuning in hbn-encapsulated graphene electronic devices,” Nano letters 19, 4097–4102 (2019).
- T. Mohiuddin, A. Lombardo, R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. Basko, C. Galiotis, N. Marzari, et al., “Uniaxial strain in graphene by raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation,” Physical Review B 79, 205433 (2009).
- W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, et al., “Piezoelectricity of single-atomic-layer MoS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT for energy conversion and piezotronics,” Nature 514, 470–474 (2014).
- A. Pustogow, Y. Luo, A. Chronister, Y.-S. Su, D. Sokolov, F. Jerzembeck, A. P. Mackenzie, C. W. Hicks, N. Kikugawa, S. Raghu, et al., “Constraints on the superconducting order parameter in Sr22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTRuO44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT from oxygen-17 nuclear magnetic resonance,” Nature 574, 72–75 (2019).
- J. Cenker, S. Sivakumar, K. Xie, A. Miller, P. Thijssen, Z. Liu, A. Dismukes, J. Fonseca, E. Anderson, X. Zhu, et al., “Reversible strain-induced magnetic phase transition in a van der waals magnet,” Nature Nanotechnology 17, 256–261 (2022).
- K. Hwangbo, J. Cenker, E. Rosenberg, Q. Jiang, H. Wen, D. Xiao, J.-H. Chu, and X. Xu, “Strain tuning three-state Potts nematicity in a correlated antiferromagnet,” arXiv preprint arXiv:2308.08734 (2023).
- Product P-885.11 from PI (Physik Instrumente) USA.
- N. Samkharadze, A. Kumar, and G. A. Csáthy, “A new type of carbon resistance thermometer with excellent thermal contact at millikelvin temperatures,” Journal of Low Temperature Physics 160, 246–253 (2010).
- Stycast@@{}^{@}start_FLOATSUPERSCRIPT @ end_FLOATSUPERSCRIPT epoxy 2850FT with catalyst 24LV from Henkel.
- Vishay Micro-Measurements or Piezo-Metrics, Inc.
- International Wafer Service, Inc.
- C.-C. Tseng, X. Ma, Z. Liu, K. Watanabe, T. Taniguchi, J.-H. Chu, and M. Yankowitz, “Anomalous hall effect at half filling in twisted bilayer graphene,” Nature Physics 18, 1038–1042 (2022).
- F. Ureña, S. H. Olsen, and J.-P. Raskin, “Raman measurements of uniaxial strain in silicon nanostructures,” Journal of Applied Physics 114 (2013).
- C. Li, P. Hesketh, and G. Maclay, “Thin gold film strain gauges,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 12, 813–819 (1994).
- M. Shayegan, K. Karrai, Y. Shkolnikov, K. Vakili, E. De Poortere, and S. Manus, “Low-temperature, in situ tunable, uniaxial stress measurements in semiconductors using a piezoelectric actuator,” Applied physics letters 83, 5235–5237 (2003).
- J.-H. Chu, H.-H. Kuo, J. G. Analytis, and I. R. Fisher, “Divergent nematic susceptibility in an iron arsenide superconductor,” Science 337, 710–712 (2012).
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.