Papers
Topics
Authors
Recent
2000 character limit reached

A gradient flow of Spin(7)-structures

Published 1 Apr 2024 in math.DG | (2404.00870v1)

Abstract: We formulate and study the negative gradient flow of an energy functional of Spin(7)-structures on compact 8-manifolds. The energy functional is the $L2$-norm of the torsion of the Spin(7)-structure. Our main result is the short-time existence and uniqueness of solutions to the flow. We also explain how this negative gradient flow is the most general flow of Spin(7)-structures. We also study solitons of the flow and prove a non-existence result for compact expanding solitons.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. “The Ricci flow in Riemannian geometry. A complete proof of the differentiable 1/4-pinching sphere theorem” 2011, Lect. Notes Math. Berlin: Springer, 2011 DOI: 10.1007/978-3-642-16286-2
  2. Bernd Ammann, Hartmut Weiss and Frederik Witt “A spinorial energy functional: critical points and gradient flow” In Math. Ann. 365.3-4, 2016, pp. 1559–1602 DOI: 10.1007/s00208-015-1315-8
  3. “The Ricci flow: an introduction” 110, Math. Surv. Monogr. Providence, RI: American Mathematical Society (AMS), 2004
  4. Dennis M. DeTurck “Deforming metrics in the direction of their Ricci tensors” In J. Differ. Geom. 18, 1983, pp. 157–162 DOI: 10.4310/jdg/1214509286
  5. Shubham Dwivedi, Panagiotis Gianniotis and Spiro Karigiannis “A gradient flow of isometric G2subscriptG2\mathrm{G}_{2}roman_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-structures” In J. Geom. Anal. 31.2, 2021, pp. 1855–1933 DOI: 10.1007/s12220-019-00327-8
  6. Shubham Dwivedi, Panagiotis Gianniotis and Spiro Karigiannis “Flows of G2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-structures, II: Curvature, torsion, symbols, and functionals”, 2023 DOI: 10.48550/arXiv.2311.05516
  7. Shubham Dwivedi, Eric Loubeau and Henrique N.Sá Earp “Harmonic flow of Spin⁢(7)Spin7\mathrm{Spin}(7)roman_Spin ( 7 )-structures” In Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) Vol. XXV (2024), 151-215, 2024 arXiv:2109.06340 [math.DG]
  8. Marisa Fernández “A classification of Riemannian manifolds with structure group Spin⁢(7)Spin7{\rm Spin}(7)roman_Spin ( 7 )” In Ann. Mat. Pura Appl. (4) 143, 1986, pp. 101–122 DOI: 10.1007/BF01769211
  9. “Flows of geometric structures” In arXiv e-prints, 2022, pp. arXiv:2211.05197 DOI: 10.48550/arXiv.2211.05197
  10. Dominic D. Joyce “Compact manifolds with special holonomy”, Oxford Mathematical Monographs Oxford University Press, Oxford, 2000, pp. xii+436
  11. Spiro Karigiannis “Flows of Spin(7)-structures” In Differential geometry and its applications World Sci. Publ., Hackensack, NJ, 2008, pp. 263–277 DOI: 10.1142/9789812790613_0023
  12. Kirill Krasnov “Dynamics of Cayley Forms”, 2024 arXiv:2403.16661 [math.DG]
  13. Eric Loubeau and Henrique N. Sá Earp “Harmonic flow of geometric structures” Id/No 23 In Ann. Global Anal. Geom. 64.4, 2023, pp. 42 DOI: 10.1007/s10455-023-09928-7
  14. Peter Topping “Lectures on the Ricci flow” 325, Lond. Math. Soc. Lect. Note Ser. Cambridge: Cambridge University Press, 2006
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.