Papers
Topics
Authors
Recent
2000 character limit reached

Reducing of the Uncertainty Product of Coherent Light through Multi-Photon Interference (2404.00496v1)

Published 30 Mar 2024 in quant-ph

Abstract: We demonstrate theoretically and experimentally how the diffraction and interferometric resolution limit for single-mode coherent cw laser light can be overcome by multi-photon interference. By use of a Mach-Zehnder interferometer, operated in the single input and single or double output port geometries, we observe a fringe width reduction of the conventional interference pattern, predicted by the wave or single photon quantum theory, by a factor of up to $1/\sqrt{2N}$ through coincident detection of $N=2,3,4$ photons. Our scheme does not require squeezed or entangled light to overcome the standard quantum limit and greatly facilitates precision interferometry experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. R. J. Glauber, The quantum theory of optical coherence, Phys. Rev. 130, 2529 (1963a).
  2. R. J. Glauber, Coherent and incoherent states of the radiation field, Phys. Rev. 131, 2766 (1963b).
  3. R. Glauber, Optical coherence and photon statistics, in Quantum Optics and Electronics, edited by A. B. C. deWitt and C. Cohen-Tannoudji (Gordon and Breach, New York, 1965).
  4. C. M. Caves, Quantum-mechanical noise in an interferometer, Phys. Rev. D 23, 1693 (1981).
  5. J. P. Dowling, Quantum optical metrology – the lowdown on high-N00N states, Contemp. Phys. 49, 125 (2008).
  6. V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quantum metrology, Nature Photonics 5, 222 (2011).
  7. P. A. M. Dirac, Quantum Mechanics, 4th ed. (Oxford University Press, Oxford, 1958).
  8. J. Liu and G. Zhang, Unified interpretation for second-order subwavelength interference based on Feynman’s path-integral theory, Phys. Rev. A 82, 013822 (2010).
  9. J. Stöhr, Overcoming the Diffraction Limit by Multi-Photon Interference: A Tutorial, Adv. Optics and Photonics 11, 215 (2019).
  10. K. Hentschel, Photons: The History and Mental Models of Light Quanta (Springer, Heidelberg, 2018).
  11. C. C. Gerry and P. L. Knight, Introductory Quantum Optics (Cambridge University Press, Cambridge, 2005).
  12. R. Loudon, The Quantum Theory of Light, Third edition (Clarendon Press, Oxford, 2000).
  13. W. Heisenberg, Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanik, Z. Phys. 43, 172 (1927).
  14. P. A. M. Dirac, The physical interpretation of quantum dynamics, Proc. Roy. Soc. A 113, 621 (1927a).
  15. P. A. M. Dirac, The quantum theory of the emission and absorption of radiation, Proc. Roy. Soc. A 114, 243 (1927b).
  16. J. Stöhr, The Nature of X-Rays and Their Interactions with Matter (Springer, Heidelberg, 2023).
  17. T. L. Dimitrova and A. Weis, The wave-particle duality of light: A demonstration experiment, Am. J. Phys. 76, 137 (2008).
  18. S. Kim and B. S. Ham, Revisiting self-interference in Young’s double-slit experiments, Sci. Rep. 13, 977 (2023).
  19. H. P. Yuen, Two-photon coherent states of the radiation field, Phys. Rev. A 13, 2226 (1976).
  20. L. Barsotti et al., Squeezed vacuum states of light for gravitational wave detectors, Rep. Prog. Phys. 82, 016905 (2019).
  21. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997).
  22. J. P. Dowling, Correlated input-port, matter-wave interferometer: Quantum-noise limits to the atom-laser gyroscope, Phys. Rev. A 57, 4736 (1998).
  23. F. J. Duarte, Fundamentals of Quantum Entanglement (IOP Publishing, 2022).
  24. M. D’Angelo, M. V. Chekhova, and Y. Shih, Two-photon diffraction and quantum lithography, Phys. Rev. Lett. 87, 013602 (2001).
  25. X.-L. Wang et al., 18-qubit entanglement with six photons’ three degrees of freedom, Phys. Rev. Lett. 120, 260502 (2018).
  26. T. Kim, , and H. Kim, Phase sensitivity of a quantum Mach–Zehnder interferometer for a coherent state input, J. Opt. Soc. Am. B 26, 671 (2009).
  27. V. Degiorgio, Phase shift between the transmitted and the reflected optical fields of a semireflecting lossless mirror is π/2𝜋2\pi/2italic_π / 2, Am. J. Phys. 48, 81 (1980).
  28. Z. Y. Ou, C. K. Hong, and L. Mandel, Relations between input and output states for a beam splitter, Opt. Commun. 63, 118 (1987).
  29. F. W. Sun, Z. Y. Ou, and G. C. Guo, Projection measurement of the maximally entangled n-photon state for a demonstration of the N-photon de Broglie wavelength, Phys. Rev. A 73, 023808 (2006).
  30. U. M. Titulaer and R. J. Glauber, Correlation functions for coherent fields, Phys. Rev. 140, B676 (1965).
  31. E. H. Kennard, Zur quantenmechanik einfacher bewegungstypen, Z. Phys. 44, 326 (1927).
  32. E. Abbe, Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung, Archiv Mikrosk. Anatomie 9, 413 (1873).
  33. L. Rayleigh, On the passage of waves through apertures in plane screens, and allied problems, Philos. Mag. 43, 259 (1897).
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.