Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Zero-shot Safety Prediction for Autonomous Robots with Foundation World Models (2404.00462v3)

Published 30 Mar 2024 in cs.LG and cs.RO

Abstract: A world model creates a surrogate world to train a controller and predict safety violations by learning the internal dynamic model of systems. However, the existing world models rely solely on statistical learning of how observations change in response to actions, lacking precise quantification of how accurate the surrogate dynamics are, which poses a significant challenge in safety-critical systems. To address this challenge, we propose foundation world models that embed observations into meaningful and causally latent representations. This enables the surrogate dynamics to directly predict causal future states by leveraging a training-free LLM. In two common benchmarks, this novel model outperforms standard world models in the safety prediction task and has a performance comparable to supervised learning despite not using any data. We evaluate its performance with a more specialized and system-relevant metric by comparing estimated states instead of aggregating observation-wide error.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. D. Ha and J. Schmidhuber, “Recurrent world models facilitate policy evolution,” in Advances in Neural Information Processing Systems 31.   Curran Associates, Inc., 2018, pp. 2451–2463, https://worldmodels.github.io. [Online]. Available: https://papers.nips.cc/paper/7512-recurrent-world-models-facilitate-policy-evolution
  2. D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba, “Mastering atari with discrete world models,” 2022.
  3. V. Micheli, E. Alonso, and F. Fleuret, “Transformers are sample-efficient world models,” in The Eleventh International Conference on Learning Representations, 2023. [Online]. Available: https://openreview.net/forum?id=vhFu1Acb0xb
  4. A. Acharya, R. Russell, and N. R. Ahmed, “Competency assessment for autonomous agents using deep generative models,” 2022.
  5. Z. Mao, C. Sobolewski, and I. Ruchkin, “How safe am i given what i see? calibrated prediction of safety chances for image-controlled autonomy,” 2024.
  6. D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2022.
  7. A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and R. Girshick, “Segment anything,” 2023.
  8. G. Team, “Gemini: A family of highly capable multimodal models,” 2023.
  9. M. Yang, F. Liu, Z. Chen, X. Shen, J. Hao, and J. Wang, “Causalvae: Structured causal disentanglement in variational autoencoder,” 2023.
  10. A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, “The curious case of neural text degeneration,” 2020.
  11. G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba, “Openai gym,” CoRR, vol. abs/1606.01540, 2016. [Online]. Available: http://arxiv.org/abs/1606.01540
  12. “Safety and trustworthiness of deep neural networks: A survey,” CoRR, vol. abs/1812.08342, 2018, withdrawn. [Online]. Available: http://arxiv.org/abs/1812.08342
  13. J. G. Moreno-Torres, T. Raeder, R. Alaiz-Rodríguez, N. V. Chawla, and F. Herrera, “A unifying view on dataset shift in classification,” Pattern Recognition, vol. 45, no. 1, pp. 521–530, 2012. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0031320311002901
  14. T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” 2020.
  15. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” 2019.
  16. A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever, “Learning transferable visual models from natural language supervision,” CoRR, vol. abs/2103.00020, 2021. [Online]. Available: https://arxiv.org/abs/2103.00020
  17. S. Mirchandani, F. Xia, P. Florence, B. Ichter, D. Driess, M. G. Arenas, K. Rao, D. Sadigh, and A. Zeng, “Large language models as general pattern machines,” 2023.
  18. A. Peng, I. Sucholutsky, B. Z. Li, T. R. Sumers, T. L. Griffiths, J. Andreas, and J. A. Shah, “Learning with language-guided state abstractions,” 2024.
  19. Z. Jin, Y. Chen, F. Gonzalez, J. Liu, J. Zhang, J. Michael, B. Schölkopf, and M. Diab, “Role of semantic representations in an era of large language models.”
  20. A. Bobu, A. Peng, P. Agrawal, J. A. Shah, and A. D. Dragan, “Aligning human and robot representations,” in Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction, ser. HRI ’24.   ACM, Mar. 2024. [Online]. Available: http://dx.doi.org/10.1145/3610977.3634987
  21. D. Halawi, F. Zhang, C. Yueh-Han, and J. Steinhardt, “Approaching human-level forecasting with language models,” 2024.
  22. A. F. Ansari, L. Stella, C. Turkmen, X. Zhang, P. Mercado, H. Shen, O. Shchur, S. S. Rangapuram, S. P. Arango, S. Kapoor, J. Zschiegner, D. C. Maddix, M. W. Mahoney, K. Torkkola, A. G. Wilson, M. Bohlke-Schneider, and Y. Wang, “Chronos: Learning the language of time series,” 2024.
  23. S. Vemprala, R. Bonatti, A. Bucker, and A. Kapoor, “Chatgpt for robotics: Design principles and model abilities,” 2023.
  24. A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess, A. Dubey, C. Finn, P. Florence, C. Fu, M. G. Arenas, K. Gopalakrishnan, K. Han, K. Hausman, A. Herzog, J. Hsu, B. Ichter, A. Irpan, N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, I. Leal, L. Lee, T.-W. E. Lee, S. Levine, Y. Lu, H. Michalewski, I. Mordatch, K. Pertsch, K. Rao, K. Reymann, M. Ryoo, G. Salazar, P. Sanketi, P. Sermanet, J. Singh, A. Singh, R. Soricut, H. Tran, V. Vanhoucke, Q. Vuong, A. Wahid, S. Welker, P. Wohlhart, J. Wu, F. Xia, T. Xiao, P. Xu, S. Xu, T. Yu, and B. Zitkovich, “Rt-2: Vision-language-action models transfer web knowledge to robotic control,” 2023.
  25. X. Huang, W. Ruan, W. Huang, G. Jin, Y. Dong, C. Wu, S. Bensalem, R. Mu, Y. Qi, X. Zhao, K. Cai, Y. Zhang, S. Wu, P. Xu, D. Wu, A. Freitas, and M. A. Mustafa, “A survey of safety and trustworthiness of large language models through the lens of verification and validation,” 2023.
  26. S. Tan, B. Ivanovic, X. Weng, M. Pavone, and P. Kraehenbuehl, “Language conditioned traffic generation,” 2023.
  27. S. Wen, H. Wang, and D. Metaxas, “Social ode: Multi-agent trajectory forecasting with neural ordinary differential equations,” in European Conference on Computer Vision.   Springer, 2022, pp. 217–233.
  28. H. Cui, T. Nguyen, F.-C. Chou, T.-H. Lin, J. Schneider, D. Bradley, and N. Djuric, “Deep kinematic models for kinematically feasible vehicle trajectory predictions,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 10 563–10 569.
  29. M. Althoff, M. Forets, C. Schilling, and M. Wetzlinger, “Arch-comp22 category report: Continuous and hybrid systems with linear continuous dynamics,” in Proc. of 9th International Workshop on Applied Verification of Continuous and Hybrid Systems, 2022.
  30. X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An analyzer for non-linear hybrid systems,” in Computer Aided Verification: 25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings 25.   Springer, 2013, pp. 258–263.
  31. S. M. Katz, A. L. Corso, C. A. Strong, and M. J. Kochenderfer, “Verification of image-based neural network controllers using generative models,” CoRR, vol. abs/2105.07091, 2021. [Online]. Available: https://arxiv.org/abs/2105.07091
  32. Y. Geng, S. Dutta, and I. Ruchkin, “Bridging dimensions: Confident reachability for high-dimensional controllers,” 2024.
  33. A. Dixit, L. Lindemann, S. X. Wei, M. Cleaveland, G. J. Pappas, and J. W. Burdick, “Adaptive conformal prediction for motion planning among dynamic agents,” in Learning for Dynamics and Control Conference.   PMLR, 2023, pp. 300–314.
  34. X. Qin, Y. Xia, A. Zutshi, C. Fan, and J. V. Deshmukh, “Statistical verification of cyber-physical systems using surrogate models and conformal inference,” in 2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS).   IEEE, 2022, pp. 116–126.
  35. A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever, “Zero-shot text-to-image generation,” 2021.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube