Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Random Reed-Solomon Codes are List Recoverable with Optimal List Size (2404.00206v2)

Published 30 Mar 2024 in cs.IT, cs.CC, math.CO, and math.IT

Abstract: We prove that Reed-Solomon (RS) codes with random evaluation points are list recoverable up to capacity with optimal output list size, for any input list size. Namely, given an input list size $\ell$, a designated rate $R$, and any $\varepsilon > 0$, we show that a random RS code is list recoverable from $1-R-\varepsilon$ fraction of errors with output list size $L = O(\ell/\varepsilon)$, for field size $q=\exp(\ell,1/\varepsilon) \cdot n2$. In particular, this shows that random RS codes are list recoverable beyond the "list recovery Johnson bound". Such a result was not even known for arbitrary random linear codes. Our technique follows and extends the recent line of work on list decoding of random RS codes, specifically the works of Brakensiek, Gopi, and Makam (STOC 2023), and of Guo and Zhang (FOCS 2023).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: