Testing an oscillatory behavior of dark energy (2404.00181v3)
Abstract: The main aim of this work is to use a model-independent approach, along with late-time observational probes, to reconstruct the dark energy (DE) equation of state $w_{\rm DE}(z)$. Our analysis showed that, for a late time universe, $w_{\rm DE}$ deviates from being a constant but in contrast exhibits an oscillatory behavior, hence both quintessence ($w_{\rm DE}> -1$) and phantom ($w_{\rm DE} < -1$) regimes are equally allowed. In order to portray this oscillatory behavior, we explored various parametrizations for the equation of state and identified the closest approximation based on the goodness of fit with the data and the Bayesian evidence analysis. Our findings indicated that while all considered oscillating DE parametrizations provided a better fit to the data, compared to the cosmological constant, they are penalized in the Bayesian evidence analysis due to the additional free parameters. Overall, the present article demonstrates that in the low redshift regime, the equation of state of the DE prefers to be dynamical and oscillating. We anticipate that future cosmological probes will take a stand in this direction.
- S. Weinberg, The Cosmological Constant Problem, Rev. Mod. Phys. 61, 1 (1989).
- N. Aghanim et al. (Planck), Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
- A. G. Riess et al., A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s−11{}^{-1}start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT Mpc−11{}^{-1}start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT Uncertainty from the Hubble Space Telescope and the SH0ES Team, Astrophys. J. Lett. 934, L7 (2022), arXiv:2112.04510 [astro-ph.CO] .
- L. Verde, T. Treu, and A. G. Riess, Tensions between the Early and the Late Universe, in Nature Astronomy 2019 (2019) arXiv:1907.10625 [astro-ph.CO] .
- L. Knox and M. Millea, Hubble constant hunter’s guide, Phys. Rev. D 101, 043533 (2020), arXiv:1908.03663 [astro-ph.CO] .
- E. Di Valentino et al., Snowmass2021 - Letter of interest cosmology intertwined II: The hubble constant tension, Astropart. Phys. 131, 102605 (2021a), arXiv:2008.11284 [astro-ph.CO] .
- K. Jedamzik, L. Pogosian, and G.-B. Zhao, Why reducing the cosmic sound horizon alone can not fully resolve the Hubble tension, Commun. in Phys. 4, 123 (2021), arXiv:2010.04158 [astro-ph.CO] .
- M. Kamionkowski and A. G. Riess, The Hubble Tension and Early Dark Energy, Ann. Rev. Nucl. Part. Sci. 73, 153 (2023), arXiv:2211.04492 [astro-ph.CO] .
- E. J. Copeland, M. Sami, and S. Tsujikawa, Dynamics of dark energy, Int. J. Mod. Phys. D 15, 1753 (2006), arXiv:hep-th/0603057 .
- I. Tutusaus, M. Kunz, and L. Favre, Solving the Hubble tension at intermediate redshifts with dynamical dark energy, arXiv:2311.16862 (2023), arXiv:2311.16862 [astro-ph.CO] .
- S. Nojiri and S. D. Odintsov, Introduction to modified gravity and gravitational alternative for dark energy, eConf C0602061, 06 (2006a), arXiv:hep-th/0601213 .
- T. P. Sotiriou and V. Faraoni, f(R) Theories Of Gravity, Rev. Mod. Phys. 82, 451 (2010), arXiv:0805.1726 [gr-qc] .
- A. De Felice and S. Tsujikawa, f(R) theories, Living Rev. Rel. 13, 3 (2010), arXiv:1002.4928 [gr-qc] .
- G.-B. Zhao et al., Dynamical dark energy in light of the latest observations, Nature Astron. 1, 627 (2017), arXiv:1701.08165 [astro-ph.CO] .
- D. Tamayo and J. A. Vazquez, Fourier-series expansion of the dark-energy equation of state, Mon. Not. Roy. Astron. Soc. 487, 729 (2019), arXiv:1901.08679 [astro-ph.CO] .
- E. V. Linder, On oscillating dark energy, Astropart. Phys. 25, 167 (2006), arXiv:astro-ph/0511415 .
- S. Nojiri and S. D. Odintsov, The Oscillating dark energy: Future singularity and coincidence problem, Phys. Lett. B 637, 139 (2006b), arXiv:hep-th/0603062 .
- A. Kurek, O. Hrycyna, and M. Szydlowski, Constraints on oscillating dark energy models, Phys. Lett. B 659, 14 (2008), arXiv:0707.0292 [astro-ph] .
- D. Jain, A. Dev, and J. S. Alcaniz, Cosmological bounds on oscillating dark energy models, Phys. Lett. B 656, 15 (2007), arXiv:0709.4234 [astro-ph] .
- D. Saez-Gomez, Oscillating Universe from inhomogeneous EoS and coupled dark energy, Grav. Cosmol. 15, 134 (2009), arXiv:0804.4586 [hep-th] .
- A. Kurek, O. Hrycyna, and M. Szydlowski, From model dynamics to oscillating dark energy parametrisation, Phys. Lett. B 690, 337 (2010), arXiv:0805.4005 [astro-ph] .
- S. Pan, E. N. Saridakis, and W. Yang, Observational Constraints on Oscillating Dark-Energy Parametrizations, Phys. Rev. D 98, 063510 (2018), arXiv:1712.05746 [astro-ph.CO] .
- G. Panotopoulos and A. Rincón, Growth index and statefinder diagnostic of Oscillating Dark Energy, Phys. Rev. D 97, 103509 (2018), arXiv:1804.11208 [astro-ph.CO] .
- M. Rezaei, Observational constraints on the oscillating dark energy cosmologies, Mon. Not. Roy. Astron. Soc. 485, 550 (2019), arXiv:1902.04776 [gr-qc] .
- D. Scolnic et al., The Pantheon+ Analysis: The Full Data Set and Light-curve Release, Astrophys. J. 938, 113 (2022), arXiv:2112.03863 [astro-ph.CO] .
- S. Alam et al. (eBOSS), Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory, Phys. Rev. D 103, 083533 (2021), arXiv:2007.08991 [astro-ph.CO] .
- J. Simon, L. Verde, and R. Jimenez, Constraints on the redshift dependence of the dark energy potential, Phys. Rev. D 71, 123001 (2005), arXiv:astro-ph/0412269 .
- M. Moresco, Raising the bar: new constraints on the Hubble parameter with cosmic chronometers at z ∼similar-to\sim∼ 2, Mon. Not. Roy. Astron. Soc. 450, L16 (2015), arXiv:1503.01116 [astro-ph.CO] .
- M. Moresco, https://gitlab.com/mmoresco/CCcovariance.
- A. Slosar and J. A. Vazquez, https://github.com/ja-vazquez/SimpleMC.
- E. Aubourg et al., Cosmological implications of baryon acoustic oscillation measurements, Phys. Rev. D 92, 123516 (2015), arXiv:1411.1074 [astro-ph.CO] .
- J. S. Speagle, dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences, Mon. Not. Roy. Astron. Soc. 493, 3132 (2020), arXiv:1904.02180 [astro-ph.IM] .
- J. Speagle, https://dynesty.readthedocs.io/en/stable/index.html.
- L. A. Escamilla and J. A. Vazquez, Model selection applied to reconstructions of the Dark Energy, Eur. Phys. J. C 83, 251 (2023), arXiv:2111.10457 [astro-ph.CO] .
- W. L. Freedman et al., The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch, Astrophys. J. 882, 34 (2019), arXiv:1907.05922 [astro-ph.CO] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.