Papers
Topics
Authors
Recent
Search
2000 character limit reached

Quantum simulation of entanglement and hadronization in jet production: lessons from the massive Schwinger model

Published 29 Mar 2024 in hep-ph, hep-th, nucl-th, and quant-ph | (2404.00087v1)

Abstract: The possible link between entanglement and thermalization, and the dynamics of hadronization are addressed by studying the real-time response of the massive Schwinger model coupled to external sources. This setup mimics the production and fragmentation of quark jets, as the Schwinger model and QCD share the properties of confinement and chiral symmetry breaking. By using quantum simulations on classical hardware, we study the entanglement between the produced jets, and observe the growth of the corresponding entanglement entropy in time. This growth arises from the increased number of contributing eigenstates of the reduced density matrix with sufficiently large and close eigenvalues. We also investigate the physical nature of these eigenstates, and find that at early times they correspond to fermionic Fock states. We then observe the transition from these fermionic Fock states to meson-like bound states as a function of time. In other words, we observe how hadronization develops in real time. At late times, the local observables at mid-rapidity (such as the fermion density and the electric field) approach approximately constant values, suggesting the onset of equilibrium and approach to thermalization.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. D. E. Kharzeev and E. M. Levin, “Deep inelastic scattering as a probe of entanglement,” Phys. Rev. D 95 no. 11, (2017) 114008, arXiv:1702.03489 [hep-ph].
  2. Z. Tu, D. E. Kharzeev, and T. Ullrich, “Einstein-Podolsky-Rosen Paradox and Quantum Entanglement at Subnucleonic Scales,” Phys. Rev. Lett. 124 no. 6, (2020) 062001, arXiv:1904.11974 [hep-ph].
  3. M. Hentschinski, D. E. Kharzeev, K. Kutak, and Z. Tu, “Probing the Onset of Maximal Entanglement inside the Proton in Diffractive Deep Inelastic Scattering,” Phys. Rev. Lett. 131 no. 24, (2023) 241901, arXiv:2305.03069 [hep-ph].
  4. H1 Collaboration, V. Andreev et al., “Measurement of charged particle multiplicity distributions in DIS at HERA and its implication to entanglement entropy of partons,” Eur. Phys. J. C 81 no. 3, (2021) 212, arXiv:2011.01812 [hep-ex].
  5. D. E. Kharzeev, “Quantum information approach to high energy interactions,” Phil. Trans. A. Math. Phys. Eng. Sci. 380 no. 2216, (2021) 20210063, arXiv:2108.08792 [hep-ph].
  6. N. Armesto, F. Dominguez, A. Kovner, M. Lublinsky, and V. Skokov, “The Color Glass Condensate density matrix: Lindblad evolution, entanglement entropy and Wigner functional,” JHEP 05 (2019) 025, arXiv:1901.08080 [hep-ph].
  7. D. E. Kharzeev and E. Levin, “Deep inelastic scattering as a probe of entanglement: Confronting experimental data,” Phys. Rev. D 104 no. 3, (2021) L031503, arXiv:2102.09773 [hep-ph].
  8. G. Dvali and R. Venugopalan, “Classicalization and unitarization of wee partons in QCD and gravity: The CGC-black hole correspondence,” Phys. Rev. D 105 no. 5, (2022) 056026, arXiv:2106.11989 [hep-th].
  9. K. Zhang, K. Hao, D. Kharzeev, and V. Korepin, “Entanglement entropy production in deep inelastic scattering,” Phys. Rev. D 105 no. 1, (2022) 014002, arXiv:2110.04881 [quant-ph].
  10. Y. Liu, M. A. Nowak, and I. Zahed, “Entanglement entropy and flow in two-dimensional QCD: Parton and string duality,” Phys. Rev. D 105 no. 11, (2022) 114027, arXiv:2202.02612 [hep-ph].
  11. Y. Liu, M. A. Nowak, and I. Zahed, “Rapidity evolution of the entanglement entropy in quarkonium: Parton and string duality,” Phys. Rev. D 105 no. 11, (2022) 114028, arXiv:2203.00739 [hep-ph].
  12. A. Dumitru, A. Kovner, and V. V. Skokov, “Entanglement entropy of the proton in coordinate space,” Phys. Rev. D 108 no. 1, (2023) 014014, arXiv:2304.08564 [hep-ph].
  13. Y. I. Azimov, Y. L. Dokshitzer, V. A. Khoze, and S. I. Troyan, “Similarity of Parton and Hadron Spectra in QCD Jets,” Z. Phys. C 27 (1985) 65–72.
  14. Y. L. Dokshitzer, V. A. Khoze, and S. I. Troian, “On the concept of local parton hadron duality,” J. Phys. G 17 (1991) 1585–1587.
  15. M. Hentschinski and K. Kutak, “Evidence for the maximally entangled low x proton in Deep Inelastic Scattering from H1 data,” Eur. Phys. J. C 82 no. 2, (2022) 111, arXiv:2110.06156 [hep-ph]. [Erratum: Eur.Phys.J.C 83, 1147 (2023)].
  16. F. Becattini and U. W. Heinz, “Thermal hadron production in p p and p anti-p collisions,” Z. Phys. C 76 (1997) 269–286, arXiv:hep-ph/9702274. [Erratum: Z.Phys.C 76, 578 (1997)].
  17. A. Andronic, P. Braun-Munzinger, and J. Stachel, “Thermal hadron production in relativistic nuclear collisions: The Hadron mass spectrum, the horn, and the QCD phase transition,” Phys. Lett. B 673 (2009) 142–145, arXiv:0812.1186 [nucl-th]. [Erratum: Phys.Lett.B 678, 516 (2009)].
  18. A. Casher, J. B. Kogut, and L. Susskind, “Vacuum polarization and the absence of free quarks,” Phys. Rev. D 10 (1974) 732–745.
  19. F. Loshaj and D. E. Kharzeev, “LPM effect as the origin of the jet fragmentation scaling in heavy ion collisions,” Int. J. Mod. Phys. E 21 (2012) 1250088, arXiv:1111.0493 [hep-ph].
  20. D. E. Kharzeev and F. Loshaj, “Jet energy loss and fragmentation in heavy ion collisions,” Phys. Rev. D 87 no. 7, (2013) 077501, arXiv:1212.5857 [hep-ph].
  21. D. E. Kharzeev and F. Loshaj, “Anomalous soft photon production from the induced currents in Dirac sea,” Phys. Rev. D 89 no. 7, (2014) 074053, arXiv:1308.2716 [hep-ph].
  22. A. Florio, D. Frenklakh, K. Ikeda, D. Kharzeev, V. Korepin, S. Shi, and K. Yu, “Real-Time Nonperturbative Dynamics of Jet Production in Schwinger Model: Quantum Entanglement and Vacuum Modification,” Phys. Rev. Lett. 131 no. 2, (2023) 021902, arXiv:2301.11991 [hep-ph].
  23. C. W. Bauer et al., “Quantum Simulation for High-Energy Physics,” PRX Quantum 4 no. 2, (2023) 027001, arXiv:2204.03381 [quant-ph].
  24. C. W. Bauer, Z. Davoudi, N. Klco, and M. J. Savage, “Quantum simulation of fundamental particles and forces,” Nature Rev. Phys. 5 no. 7, (2023) 420–432.
  25. N. Klco, E. F. Dumitrescu, A. J. McCaskey, T. D. Morris, R. C. Pooser, M. Sanz, E. Solano, P. Lougovski, and M. J. Savage, “Quantum-classical computation of Schwinger model dynamics using quantum computers,” Phys. Rev. A 98 no. 3, (2018) 032331, arXiv:1803.03326 [quant-ph].
  26. R. C. Farrell, M. Illa, A. N. Ciavarella, and M. J. Savage, “Scalable Circuits for Preparing Ground States on Digital Quantum Computers: The Schwinger Model Vacuum on 100 Qubits,” arXiv:2308.04481 [quant-ph].
  27. R. C. Farrell, M. Illa, A. N. Ciavarella, and M. J. Savage, “Quantum Simulations of Hadron Dynamics in the Schwinger Model using 112 Qubits,” arXiv:2401.08044 [quant-ph].
  28. T. V. Zache, N. Mueller, J. T. Schneider, F. Jendrzejewski, J. Berges, and P. Hauke, “Dynamical Topological Transitions in the Massive Schwinger Model with a θ𝜃\thetaitalic_θ Term,” Phys. Rev. Lett. 122 no. 5, (2019) 050403, arXiv:1808.07885 [quant-ph].
  29. M. Rigobello, S. Notarnicola, G. Magnifico, and S. Montangero, “Entanglement generation in (1+1)D QED scattering processes,” Phys. Rev. D 104 no. 11, (2021) 114501, arXiv:2105.03445 [hep-lat].
  30. W. A. de Jong, K. Lee, J. Mulligan, M. Płoskoń, F. Ringer, and X. Yao, “Quantum simulation of nonequilibrium dynamics and thermalization in the Schwinger model,” Phys. Rev. D 106 no. 5, (2022) 054508, arXiv:2106.08394 [quant-ph].
  31. R. Belyansky, S. Whitsitt, N. Mueller, A. Fahimniya, E. R. Bennewitz, Z. Davoudi, and A. V. Gorshkov, “High-Energy Collision of Quarks and Hadrons in the Schwinger Model: From Tensor Networks to Circuit QED,” arXiv:2307.02522 [quant-ph].
  32. K. Ikeda, D. E. Kharzeev, R. Meyer, and S. Shi, “Detecting the critical point through entanglement in the schwinger model,” Phys. Rev. D 108 (Nov, 2023) L091501. https://link.aps.org/doi/10.1103/PhysRevD.108.L091501.
  33. J. a. Barata, W. Gong, and R. Venugopalan, “Realtime dynamics of hyperon spin correlations from string fragmentation in a deformed four-flavor Schwinger model,” arXiv:2308.13596 [hep-ph].
  34. K. Ikeda, D. E. Kharzeev, and S. Shi, “Nonlinear chiral magnetic waves,” Phys.Rev.D 108 (Oct, 2023) 074001. https://link.aps.org/doi/10.1103/PhysRevD.108.074001.
  35. K. Lee, J. Mulligan, F. Ringer, and X. Yao, “Liouvillian dynamics of the open Schwinger model: String breaking and kinetic dissipation in a thermal medium,” Phys. Rev. D 108 no. 9, (2023) 094518, arXiv:2308.03878 [quant-ph].
  36. K. Ikeda, D. E. Kharzeev, and Y. Kikuchi, “Real-time dynamics of Chern-Simons fluctuations near a critical point,” Phys. Rev. D 103 no. 7, (2021) L071502, arXiv:2012.02926 [hep-ph].
  37. M. Fishman, S. R. White, and E. M. Stoudenmire, “The ITensor Software Library for Tensor Network Calculations,” SciPost Phys. Codebases (2022) 4. https://scipost.org/10.21468/SciPostPhysCodeb.4.
  38. M. Fishman, S. R. White, and E. M. Stoudenmire, “Codebase release 0.3 for ITensor,” SciPost Phys. Codebases (2022) 4–r0.3. https://scipost.org/10.21468/SciPostPhysCodeb.4-r0.3.
  39. F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, “Entanglement spectrum of a topological phase in one dimension,” Phys. Rev. B 81 (Feb, 2010) 064439. https://link.aps.org/doi/10.1103/PhysRevB.81.064439.
  40. J. Eisert, M. Cramer, and M. B. Plenio, “Area laws for the entanglement entropy - a review,” Rev. Mod. Phys. 82 (2010) 277–306, arXiv:0808.3773 [quant-ph].
  41. E. Bianchi, L. Hackl, M. Kieburg, M. Rigol, and L. Vidmar, “Volume-Law Entanglement Entropy of Typical Pure Quantum States,” PRX Quantum 3 no. 3, (2022) 030201, arXiv:2112.06959 [quant-ph].
  42. Y. O. Nakagawa, M. Watanabe, S. Sugiura, and H. Fujita, “Universality in volume-law entanglement of scrambled pure quantum states,” Nature Commun. 9 no. 1, (2018) 1635, arXiv:1703.02993 [cond-mat.stat-mech].
  43. ATLAS Collaboration, G. Aad et al., “Observation of quantum entanglement in top-quark pairs using the ATLAS detector,” arXiv:2311.07288 [hep-ex].
  44. J. M. Deutsch, “Eigenstate thermalization hypothesis,” Rept. Prog. Phys. 81 no. 8, (2018) 082001.
  45. D. Kharzeev and K. Tuchin, “From color glass condensate to quark gluon plasma through the event horizon,” Nucl. Phys. A 753 (2005) 316–334, arXiv:hep-ph/0501234.
  46. J. Berges, S. Floerchinger, and R. Venugopalan, “Dynamics of entanglement in expanding quantum fields,” JHEP 04 (2018) 145, arXiv:1712.09362 [hep-th].
  47. Z.-Y. Zhou, G.-X. Su, J. C. Halimeh, R. Ott, H. Sun, P. Hauke, B. Yang, Z.-S. Yuan, J. Berges, and J.-W. Pan, “Thermalization dynamics of a gauge theory on a quantum simulator,” Science 377 no. 6603, (2022) abl6277, arXiv:2107.13563 [cond-mat.quant-gas].
  48. N. Mueller, T. V. Zache, and R. Ott, “Thermalization of Gauge Theories from their Entanglement Spectrum,” Phys. Rev. Lett. 129 no. 1, (2022) 011601, arXiv:2107.11416 [quant-ph].
  49. J.-Y. Desaules, D. Banerjee, A. Hudomal, Z. Papić, A. Sen, and J. C. Halimeh, “Weak ergodicity breaking in the Schwinger model,” Phys. Rev. B 107 no. 20, (2023) L201105, arXiv:2203.08830 [cond-mat.str-el].
  50. L. Ebner, B. Müller, A. Schäfer, C. Seidl, and X. Yao, “Eigenstate thermalization in (2+1)-dimensional SU(2) lattice gauge theory,” Phys. Rev. D 109 no. 1, (2024) 014504, arXiv:2308.16202 [hep-lat].
  51. X. Yao, “SU(2) gauge theory in 2+1 dimensions on a plaquette chain obeys the eigenstate thermalization hypothesis,” Phys. Rev. D 108 no. 3, (2023) L031504, arXiv:2303.14264 [hep-lat].
  52. S. Grieninger, K. Ikeda, D. E. Kharzeev, and I. Zahed, “Entanglement in massive Schwinger model at finite temperature and density,” Phys. Rev. D 109 no. 1, (2024) 016023, arXiv:2312.03172 [hep-th].
  53. A. Florio, “Two-fermion negativity and confinement in the Schwinger model,” arXiv:2312.05298 [hep-th].
Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.