Papers
Topics
Authors
Recent
2000 character limit reached

Exploring the baryonic effect signature in the Hyper Suprime-Cam Year 3 cosmic shear two-point correlations on small scales: the $S_8$ tension remains present (2403.20323v1)

Published 29 Mar 2024 in astro-ph.CO

Abstract: The baryonic feedback effect is considered as a possible solution to the so-called $S_8$ tension indicated in cosmic shear cosmology. The baryonic effect is more significant on smaller scales, and affects the cosmic shear two-point correlation functions (2PCFs) with different scale- and redshift-dependencies from those of the cosmological parameters. In this paper, we use the Hyper Suprime-Cam Year 3 (HSC-Y3) data to measure the cosmic shear 2PCFs ($\xi_{\pm}$) down to 0.28 arcminutes, taking full advantage of the high number density of source galaxies in the deep HSC data, to explore a possible signature of the baryonic effect. While the published HSC analysis used the cosmic shear 2PCFs on angular scales, which are sensitive to the matter power spectrum at $k\lesssim 1~h{\rm Mpc}{-1}$, the smaller scale HSC cosmic shear signal allows us to probe the signature of matter power spectrum up to $k\simeq 20~h{\rm Mpc}{-1}$. Using the accurate emulator of the nonlinear matter power spectrum, DarkEmulator2, we show that the dark matter-only model can provide an acceptable fit to the HSC-Y3 2PCFs down to the smallest scales. In other words, we do not find any clear signature of the baryonic effects or do not find a systematic shift in the $S_8$ value with the inclusion of the smaller-scale information as would be expected if the baryonic effect is significant. Alternatively, we use a flexible 6-parameter model of the baryonic effects, which can lead to both enhancement and suppression in the matter power spectrum compared to the dark matter-only model, to perform the parameter inference of the HSC-Y3 2PCFs. We find that the small-scale HSC data allow only a fractional suppression of up to 5 percent in the matter power spectrum at $k\sim 1~h{\rm Mpc}{-1}$, which is not sufficient to reconcile the $S_8$ tension.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. S. Dodelson and F. Schmidt, Modern Cosmology (2020).
  2. M. M. Ivanov, M. Simonović, and M. Zaldarriaga, Cosmological parameters from the BOSS galaxy power spectrum, Journal of Cosmology and Astroparticle Physics 2020, 042 (2020), arXiv:1909.05277 [astro-ph.CO] .
  3. S. Dodelson, Gravitational Lensing (2017).
  4. R. Mandelbaum, Weak Lensing for Precision Cosmology, ARA&A 56, 393 (2018), arXiv:1710.03235 [astro-ph.CO] .
  5. D. Huterer and M. Takada, Calibrating the nonlinear matter power spectrum: Requirements for future weak lensing surveys, Astroparticle Physics 23, 369 (2005), arXiv:astro-ph/0412142 [astro-ph] .
  6. A. Amon and G. Efstathiou, A non-linear solution to the S88{}_{8}start_FLOATSUBSCRIPT 8 end_FLOATSUBSCRIPT tension?, Monthly Notices of the Royal Astronomical Society 516, 5355 (2022a), arXiv:2206.11794 [astro-ph.CO] .
  7. C. Preston, A. Amon, and G. Efstathiou, A non-linear solution to the S88{}_{8}start_FLOATSUBSCRIPT 8 end_FLOATSUBSCRIPT tension - II. Analysis of DES Year 3 cosmic shear, Monthly Notices of the Royal Astronomical Society 525, 5554 (2023), arXiv:2305.09827 [astro-ph.CO] .
  8. M. P. van Daalen, I. G. McCarthy, and J. Schaye, Exploring the effects of galaxy formation on matter clustering through a library of simulation power spectra, Monthly Notices of the Royal Astronomical Society 491, 2424 (2020), arXiv:1906.00968 [astro-ph.CO] .
  9. X. Fang, T. Eifler, and E. Krause, 2D-FFTLog: efficient computation of real-space covariance matrices for galaxy clustering and weak lensing, Monthly Notices of the Royal Astronomical Society 497, 2699 (2020), arXiv:2004.04833 [astro-ph.CO] .
  10. T. Kurita and M. Takada, Constraints on anisotropic primordial non-Gaussianity from intrinsic alignments of SDSS-III BOSS galaxies, Phys. Rev. D 108, 083533 (2023), arXiv:2302.02925 [astro-ph.CO] .
  11. C. Hirata and U. Seljak, Shear calibration biases in weak-lensing surveys, Monthly Notices of the Royal Astronomical Society 343, 459 (2003), astro-ph/0301054 .
  12. G. M. Bernstein and M. Jarvis, Shapes and Shears, Stars and Smears: Optimal Measurements for Weak Lensing, The Astronomical Journal 123, 583 (2002), arXiv:astro-ph/0107431 [astro-ph] .
  13. M. Takada and W. Hu, Power spectrum super-sample covariance, Phys. Rev. D 87, 123504 (2013), arXiv:1302.6994 [astro-ph.CO] .
  14. J. Hartlap, P. Simon, and P. Schneider, Why your model parameter confidences might be too optimistic. Unbiased estimation of the inverse covariance matrix, Astronomy and Astrophysics 464, 399 (2007), arXiv:astro-ph/0608064 [astro-ph] .
  15. V. Springel, N. Yoshida, and S. D. M. White, GADGET: A Code for collisionless and gasdynamical cosmological simulations, New Astron. 6, 79 (2001), arXiv:astro-ph/0003162 .
  16. V. Springel, The cosmological simulation code GADGET-2, Mon. Not. Roy. Astron. Soc. 364, 1105 (2005), astro-ph/0505010 .
  17. M. Crocce and R. Scoccimarro, Memory of initial conditions in gravitational clustering, Phys. Rev. D 73, 063520 (2006), astro-ph/0509419 .
  18. A. Lewis, GetDist: a Python package for analysing Monte Carlo samples, arXiv e-prints , arXiv:1910.13970 (2019), arXiv:1910.13970 [astro-ph.IM] .
  19. J. F. Navarro, C. S. Frenk, and S. D. M. White, The Structure of Cold Dark Matter Halos, The Astrophysical Journal 462, 563 (1996), astro-ph/9508025 .
  20. A. Schneider and R. Teyssier, A new method to quantify the effects of baryons on the matter power spectrum, Journal of Cosmology and Astroparticle Physics 2015, 049 (2015), arXiv:1510.06034 [astro-ph.CO] .
  21. A. Amon and G. Efstathiou, A non-linear solution to the S88{}_{8}start_FLOATSUBSCRIPT 8 end_FLOATSUBSCRIPT tension?, Monthly Notices of the Royal Astronomical Society 516, 5355 (2022b), arXiv:2206.11794 [astro-ph.CO] .
  22. C. M. Hirata and U. Seljak, Intrinsic alignment-lensing interference as a contaminant of cosmic shear, Phys. Rev. D 70, 063526 (2004), arXiv:astro-ph/0406275 [astro-ph] .
  23. S. Bridle and L. King, Dark energy constraints from cosmic shear power spectra: impact of intrinsic alignments on photometric redshift requirements, New Journal of Physics 9, 444 (2007), arXiv:0705.0166 .
  24. S. Singh, R. Mandelbaum, and S. More, Intrinsic alignments of SDSS-III BOSS LOWZ sample galaxies, Monthly Notices of the Royal Astronomical Society 450, 2195 (2015), arXiv:1411.1755 [astro-ph.CO] .
  25. A. Cooray and W. Hu, Second-Order Corrections to Weak Lensing by Large-Scale Structure, The Astrophysical Journal 574, 19 (2002), arXiv:astro-ph/0202411 [astro-ph] .
  26. C. Vale and M. White, Simulating Weak Lensing by Large-Scale Structure, The Astrophysical Journal 592, 699 (2003), arXiv:astro-ph/0303555 [astro-ph] .
  27. S. Dodelson, C. Shapiro, and M. White, Reduced shear power spectrum, Phys. Rev. D 73, 023009 (2006), arXiv:astro-ph/0508296 [astro-ph] .
  28. C. Shapiro, Biased Dark Energy Constraints from Neglecting Reduced Shear in Weak-Lensing Surveys, The Astrophysical Journal 696, 775 (2009), arXiv:0812.0769 [astro-ph] .
  29. M. Takada and T. Hamana, Halo model predictions of the cosmic magnification statistics: the full non-linear contribution, Monthly Notices of the Royal Astronomical Society 346, 949 (2003), arXiv:astro-ph/0305381 [astro-ph] .
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 4 likes about this paper.