Gravitational Waves on Kerr Black Holes I: Reconstruction of Linearized Metric Perturbations (2403.20311v2)
Abstract: The gravitational perturbations of a rotating Kerr black hole are notoriously complicated, even at the linear level. In 1973, Teukolsky showed that their physical degrees of freedom are encoded in two gauge-invariant Weyl curvature scalars that obey a separable wave equation. Determining these scalars is sufficient for many purposes, such as the computation of energy fluxes. However, some applications -- such as second-order perturbation theory -- require the reconstruction of metric perturbations. In principle, this problem was solved long ago, but in practice, the solution has never been worked out explicitly. Here, we do so by writing down the metric perturbation (in either ingoing or outgoing radiation gauge) that corresponds to a given mode of either Weyl scalar. Our formulas make no reference to the Hertz potential (an intermediate quantity that plays no fundamental role) and involve only the radial and angular Kerr modes, but not their derivatives, which can be altogether eliminated using the Teukolsky--Starobinsky identities. We expect these analytic results to prove useful in numerical studies and for extending black hole perturbation theory beyond the linear regime.
- T. Regge and J. A. Wheeler, “Stability of a Schwarzschild Singularity,” Physical Review 108 no. 4, (Nov., 1957) 1063–1069.
- F. J. Zerilli, “Gravitational Field of a Particle Falling in a Schwarzschild Geometry Analyzed in Tensor Harmonics,” Phys. Rev. D 2 no. 10, (Nov., 1970) 2141–2160.
- S. A. Teukolsky, “Perturbations of a Rotating Black Hole. I. Fundamental Equations for Gravitational, Electromagnetic, and Neutrino-Field Perturbations,” ApJ 185 (Oct., 1973) 635–648.
- S. A. Teukolsky and W. H. Press, “Perturbations of a rotating black hole. III. Interaction of the hole with gravitational and electromagnetic radiation.,” ApJ 193 (Oct., 1974) 443–461.
- E. Newman and R. Penrose, “An Approach to Gravitational Radiation by a Method of Spin Coefficients,” Journal of Mathematical Physics 3 no. 3, (May, 1962) 566–578.
- W. Kinnersley, “Type D Vacuum Metrics,” Journal of Mathematical Physics 10 no. 7, (July, 1969) 1195–1203.
- A. Z. Petrov, “The classification of spaces defining gravitational fields,” Uchenye Zapiski Kazanskogo Gosudarstvennogo Universiteta im. V. I. Ulyanovicha-Lenina [Scientific Proceedings of Kazan State University 114 (Jan., 1954) 55–69.
- B. Carter, “Global Structure of the Kerr Family of Gravitational Fields,” Physical Review 174 no. 5, (Oct., 1968) 1559–1571.
- V. P. Frolov, P. Krtouš, and D. Kubizňák, “Black holes, hidden symmetries, and complete integrability,” Living Reviews in Relativity 20 no. 1, (Nov., 2017) 6, arXiv:1705.05482 [gr-qc].
- B. Carter and R. G. McLenaghan, “Generalized total angular momentum operator for the Dirac equation in curved space-time,” Phys. Rev. D 19 no. 4, (Feb., 1979) 1093–1097.
- G. F. Torres del Castillo, “The separability of Maxwell’s equations in type-D backgrounds,” Journal of Mathematical Physics 29 no. 4, (Apr., 1988) 971–977.
- S. Aksteiner and T. Bäckdahl, “Symmetries of linearized gravity from adjoint operators,” Journal of Mathematical Physics 60 no. 8, (Aug., 2019) 082501, arXiv:1609.04584 [gr-qc].
- J. B. Griffiths, P. Krtous, and J. Podolský, “Interpreting the C-metric,” Classical and Quantum Gravity 23 no. 23, (Dec., 2006) 6745–6766, arXiv:gr-qc/0609056 [gr-qc].
- A. Vollmer, “Killing tensors in stationary and axially symmetric space-times,” Journal of Geometry and Physics 115 (May, 2017) 28–36, arXiv:1602.08968 [math.DG].
- A. L. Dudley and I. Finley, J. D., “Separation of Wave Equations for Perturbations of General Type-D Space-Times,” Phys. Rev. Lett. 38 no. 26, (June, 1977) 1505–1508.
- J. F. Plebanski and M. Demianski, “Rotating, charged, and uniformly accelerating mass in general relativity,” Annals of Physics 98 no. 1, (May, 1976) 98–127.
- R. M. Wald, “On perturbations of a Kerr black hole.,” Journal of Mathematical Physics 14 (Jan., 1973) 1453–1461.
- N. Loutrel, J. L. Ripley, E. Giorgi, and F. Pretorius, “Second-order perturbations of Kerr black holes: Formalism and reconstruction of the first-order metric,” Phys. Rev. D 103 no. 10, (May, 2021) 104017, arXiv:2008.11770 [gr-qc].
- J. L. Ripley, N. Loutrel, E. Giorgi, and F. Pretorius, “Numerical computation of second-order vacuum perturbations of Kerr black holes,” Phys. Rev. D 103 no. 10, (May, 2021) 104018, arXiv:2010.00162 [gr-qc].
- P. L. Chrzanowski, “Vector potential and metric perturbations of a rotating black hole,” Phys. Rev. D 11 no. 8, (Apr., 1975) 2042–2062.
- J. M. Cohen and L. S. Kegeles, “Space-time perturbations,” Physics Letters A 54 no. 1, (Aug., 1975) 5–7.
- R. M. Wald, “Construction of Solutions of Gravitational, Electromagnetic, or Other Perturbation Equations from Solutions of Decoupled Equations,” Phys. Rev. Lett. 41 no. 4, (July, 1978) 203–206.
- Ó. J. C. Dias, H. S. Reall, and J. E. Santos, “Kerr-CFT and gravitational perturbations,” Journal of High Energy Physics 2009 no. 8, (Aug., 2009) 101, arXiv:0906.2380 [hep-th].
- L. S. Kegeles and J. M. Cohen, “Constructive procedure for perturbations of spacetimes,” Phys. Rev. D 19 no. 6, (Mar., 1979) 1641–1664.
- L. R. Price, Developments in the perturbation theory of algebraically special spacetimes. PhD thesis, University of Florida, Jan., 2007.
- A. Ori, “Reconstruction of inhomogeneous metric perturbations and electromagnetic four-potential in Kerr spacetime,” Phys. Rev. D 67 no. 12, (June, 2003) 124010, arXiv:gr-qc/0207045 [gr-qc].
- M. van de Meent and A. G. Shah, “Metric perturbations produced by eccentric equatorial orbits around a Kerr black hole,” Phys. Rev. D 92 no. 6, (Sept., 2015) 064025, arXiv:1506.04755 [gr-qc].
- A. Pound and B. Wardell, “Black Hole Perturbation Theory and Gravitational Self-Force,” in Handbook of Gravitational Wave Astronomy, p. 38. Springer, 2022. arXiv:2101.04592 [gr-qc].
- R. S. Borissov and P. P. Fiziev, “Exact Solutions of Teukolsky Master Equation with Continuous Spectrum,” Bulgarian Journal of Physics 37 no. 2, (Aug., 2010) 065–089, arXiv:0903.3617 [gr-qc].
- BHPToolkit Development Team, “BHPToolkit: Black Hole Perturbation Toolkit.” Astrophysics source code library, record ascl:2105.001, May, 2021.
- R. Geroch, A. Held, and R. Penrose, “A space-time calculus based on pairs of null directions,” Journal of Mathematical Physics 14 no. 7, (July, 1973) 874–881.
- B. F. Whiting and L. R. Price, “Metric reconstruction from Weyl scalars,” Classical and Quantum Gravity 22 no. 15, (Aug., 2005) S589–S604.
- P. A. Becker, “Normalization integrals of orthogonal Heun functions,” Journal of Mathematical Physics 38 no. 7, (July, 1997) 3692–3699, arXiv:funct-an/9707004 [math.FA].
- T. S. Keidl, A. G. Shah, J. L. Friedman, D.-H. Kim, and L. R. Price, “Gravitational self-force in a radiation gauge,” Phys. Rev. D 82 no. 12, (Dec., 2010) 124012, arXiv:1004.2276 [gr-qc].
- A. G. Shah, T. S. Keidl, J. L. Friedman, D.-H. Kim, and L. R. Price, “Conservative, gravitational self-force for a particle in circular orbit around a Schwarzschild black hole in a radiation gauge,” Phys. Rev. D 83 no. 6, (Mar., 2011) 064018, arXiv:1009.4876 [gr-qc].
- A. Shah, T. Keidl, J. Friedman, and L. Price, “Gravitational self-force in a radiation gauge for a particle in circular orbit around a Kerr black hole,” in APS April Meeting Abstracts, vol. 2011 of APS Meeting Abstracts, p. C12.002. Apr., 2011.
- M. van de Meent, “Gravitational self-force on generic bound geodesics in Kerr spacetime,” Phys. Rev. D 97 no. 10, (May, 2018) 104033, arXiv:1711.09607 [gr-qc].
- S. R. Green, S. Hollands, and P. Zimmerman, “Teukolsky formalism for nonlinear Kerr perturbations,” Classical and Quantum Gravity 37 no. 7, (Apr., 2020) 075001, arXiv:1908.09095 [gr-qc].
- V. Toomani, P. Zimmerman, A. Spiers, S. Hollands, A. Pound, and S. R. Green, “New metric reconstruction scheme for gravitational self-force calculations,” Classical and Quantum Gravity 39 no. 1, (Jan., 2022) 015019, arXiv:2108.04273 [gr-qc].
- L. Barack and A. Ori, “Gravitational self-force and gauge transformations,” Phys. Rev. D 64 no. 12, (Dec., 2001) 124003, arXiv:gr-qc/0107056 [gr-qc].
- A. Pound, C. Merlin, and L. Barack, “Gravitational self-force from radiation-gauge metric perturbations,” Phys. Rev. D 89 no. 2, (Jan., 2014) 024009, arXiv:1310.1513 [gr-qc].
- C. Merlin, A. Ori, L. Barack, A. Pound, and M. van de Meent, “Completion of metric reconstruction for a particle orbiting a Kerr black hole,” Phys. Rev. D 94 no. 10, (Nov., 2016) 104066, arXiv:1609.01227 [gr-qc].
- M. van de Meent, “The mass and angular momentum of reconstructed metric perturbations,” Classical and Quantum Gravity 34 no. 12, (June, 2017) 124003, arXiv:1702.00969 [gr-qc].
- J. Bardeen and G. T. Horowitz, “Extreme Kerr throat geometry: A vacuum analog of AdS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT×S22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT,” Phys. Rev. D 60 no. 10, (Nov., 1999) 104030, arXiv:hep-th/9905099 [hep-th].
- M. Guica, T. Hartman, W. Song, and A. Strominger, “The Kerr/CFT correspondence,” Phys. Rev. D 80 no. 12, (Dec., 2009) 124008, arXiv:0809.4266 [hep-th].
- A. P. Porfyriadis and A. Strominger, “Gravity waves from the Kerr/CFT correspondence,” Phys. Rev. D 90 no. 4, (Aug., 2014) 044038, arXiv:1401.3746 [hep-th].
- S. Hadar, A. P. Porfyriadis, and A. Strominger, “Gravity waves from extreme-mass-ratio plunges into Kerr black holes,” Phys. Rev. D 90 no. 6, (Sept., 2014) 064045, arXiv:1403.2797 [hep-th].
- S. Hadar, A. P. Porfyriadis, and A. Strominger, “Fast plunges into Kerr black holes,” Journal of High Energy Physics 2015 (July, 2015) 78, arXiv:1504.07650 [hep-th].
- D. Kapec and A. Lupsasca, “Particle motion near high-spin black holes,” Classical and Quantum Gravity 37 no. 1, (Jan., 2020) 015006, arXiv:1905.11406 [hep-th].
- A. J. Amsel, G. T. Horowitz, D. Marolf, and M. M. Roberts, “No dynamics in the extremal Kerr throat,” Journal of High Energy Physics 2009 no. 9, (Sept., 2009) 044, arXiv:0906.2376 [hep-th].
- A. A. Starobinskiǐ and S. M. Churilov, “Amplification of electromagnetic and gravitational waves scattered by a rotating “black hole”,” Soviet Journal of Experimental and Theoretical Physics 38 (Jan., 1974) 1.
- S. Hadar, A. Lupsasca, and A. P. Porfyriadis, “Extreme black hole anabasis,” Journal of High Energy Physics 2021 no. 3, (Mar., 2021) 223, arXiv:2012.06562 [hep-th].
- A. Castro, V. Godet, J. Simón, W. Song, and B. Yu, “Gravitational perturbations from NHEK to Kerr,” Journal of High Energy Physics 2021 no. 7, (July, 2021) 218, arXiv:2102.08060 [hep-th].
- A. P. Porfyriadis, “Scattering of gravitational and electromagnetic waves off AdS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT×S22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT in extreme Reissner-Nordström,” Journal of High Energy Physics 2018 no. 7, (July, 2018) 64, arXiv:1805.12409 [hep-th].
- A. P. Porfyriadis, “Near-AdS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT perturbations and the connection with near-extreme Reissner-Nordström,” European Physical Journal C 79 no. 10, (Oct., 2019) 841, arXiv:1806.07097 [hep-th].
- S. Chandrasekhar, “On Algebraically Special Perturbations of Black Holes,” Proceedings of the Royal Society of London Series A 392 no. 1802, (Mar., 1984) 1–13.
- N. Andersson, “LETTER TO THE EDITOR: Total transmission through the Schwarzschild black-hole potential barrier,” Classical and Quantum Gravity 11 no. 3, (Mar., 1994) L39–L44.
- G. B. Cook and S. Lu, “New total transmission modes of the Kerr geometry with Schwarzschild limit frequencies at complex infinity,” Phys. Rev. D 107 no. 4, (Feb., 2023) 044043, arXiv:2211.14955 [gr-qc].
- R. Teixeira da Costa and M. Casals, “The Teukolsky–Starobinsky constants: facts and fictions,” arXiv e-prints (Feb., 2021) arXiv:2102.06734, arXiv:2102.06734 [gr-qc].
- R. A. Breuer, J. Ryan, M. P., and S. Waller, “Some Properties of Spin-Weighted Spheroidal Harmonics,” Proceedings of the Royal Society of London Series A 358 no. 1692, (Dec., 1977) 71–86.
- M. Casals and A. C. Ottewill, “High frequency asymptotics for the spin-weighted spheroidal equation,” Phys. Rev. D 71 no. 6, (Mar., 2005) 064025, arXiv:gr-qc/0409012 [gr-qc].
- J. M. Stewart, “On the Stability of Kerr’s Space-Time,” Proceedings of the Royal Society of London Series A 344 no. 1636, (June, 1975) 65–79.
- E. Berti, V. Cardoso, and M. Casals, “Eigenvalues and eigenfunctions of spin-weighted spheroidal harmonics in four and higher dimensions,” Phys. Rev. D 73 no. 2, (Jan., 2006) 024013, arXiv:gr-qc/0511111 [gr-qc].
- G. B. Cook and M. Zalutskiy, “Gravitational perturbations of the Kerr geometry: High-accuracy study,” Phys. Rev. D 90 no. 12, (Dec., 2014) 124021, arXiv:1410.7698 [gr-qc].
- G. F. Torres Del Castillo, “Gravitational perturbations of type-D vacuum space-times with cosmological constant.,” Journal of Mathematical Physics 35 no. 6, (June, 1994) 3051–3058.
- G. Silva-Ortigoza, “A Comment on Differential Identities for the Weyl Spinor Perturbations,” General Relativity and Gravitation 29 no. 11, (Nov., 1997) 1407–1410.
- S. Chandrasekhar, The mathematical theory of black holes. Oxford University Press, 1983.
- L. R. Price, K. Shankar, and B. F. Whiting, “On the existence of radiation gauges in Petrov type II spacetimes,” Classical and Quantum Gravity 24 no. 9, (May, 2007) 2367–2388, arXiv:gr-qc/0611070 [gr-qc].
- R. M. Wald, General Relativity. University of Chicago Press, 1984.
- T. Ortín, Gravity and Strings. Cambridge University Press, 2015.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.