Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Stochastic Approximation Proximal Subgradient Method for Stochastic Convex-Concave Minimax Optimization (2403.20205v1)

Published 29 Mar 2024 in math.OC

Abstract: This paper presents a stochastic approximation proximal subgradient (SAPS) method for stochastic convex-concave minimax optimization. By accessing unbiased and variance bounded approximate subgradients, we show that this algorithm exhibits ${\rm O}(N{-1/2})$ expected convergence rate of the minimax optimality measure if the parameters in the algorithm are properly chosen, where $N$ denotes the number of iterations. Moreover, we show that the algorithm has ${\rm O}(\log(N)N{-1/2})$ minimax optimality measure bound with high probability. Further we study a specific stochastic convex-concave minimax optimization problems arising from stochastic convex conic optimization problems, which the the bounded subgradient condition is fail. To overcome the lack of the bounded subgradient conditions in convex-concave minimax problems, we propose a linearized stochastic approximation augmented Lagrange (LSAAL) method and prove that this algorithm exhibits ${\rm O}(N{-1/2})$ expected convergence rate for the minimax optimality measure and ${\rm O}(\log2(N)N{-1/2})$ minimax optimality measure bound with high probability as well. Preliminary numerical results demonstrate the effect of the SAPS and LSAAL methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.