Papers
Topics
Authors
Recent
2000 character limit reached

Quantum to Classical Neural Network Transfer Learning Applied to Drug Toxicity Prediction (2403.18997v3)

Published 27 Mar 2024 in quant-ph

Abstract: Toxicity is a roadblock that prevents an inordinate number of drugs from being used in potentially life-saving applications. Deep learning provides a promising solution to finding ideal drug candidates; however, the vastness of chemical space coupled with the underlying $\mathcal{O}(n3)$ matrix multiplication means these efforts quickly become computationally demanding. To remedy this, we present a hybrid quantum-classical neural network for predicting drug toxicity, utilizing a quantum circuit design that mimics classical neural behavior by explicitly calculating matrix products with complexity $\mathcal{O}(n2)$. Leveraging the Hadamard test for efficient inner product estimation rather than the conventionally used swap test, we reduce the number qubits by half and remove the need for quantum phase estimation. Directly computing matrix products quantum mechanically allows for learnable weights to be transferred from a quantum to a classical device for further training. We apply our framework to the Tox21 dataset and show that it achieves commensurate predictive accuracy to the model's fully classical $\mathcal{O}(n3)$ analog. Additionally, we demonstrate the model continues to learn, without disruption, once transferred to a fully classical architecture. We believe combining the quantum advantage of reduced complexity and the classical advantage of noise-free calculation will pave the way to more scalable machine learning models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. Research and Development in the Pharmaceutical Industry | Congressional Budget Office. 2021; https://www.cbo.gov/publication/57126
  2. Mayr, A.; Klambauer, G.; Unterthiner, T.; Hochreiter, S. DeepTox: Toxicity Prediction using Deep Learning. Frontiers in Environmental Science 2016, 3
  3. Banerjee, S.; Yuxun, S. H.; Konakanchi, S.; Ogunfowora, L.; Roy, S.; Selvaras, S.; Domingo, L.; Chehimi, M.; Djukic, M.; Johnson, C. A hybrid quantum-classical fusion neural network to improve protein-ligand binding affinity predictions for drug discovery. 2023; http://arxiv.org/abs/2309.03919, arXiv:2309.03919 [quant-ph]
  4. Vakili, M. G. et al. Quantum Computing-Enhanced Algorithm Unveils Novel Inhibitors for KRAS. 2024; http://arxiv.org/abs/2402.08210, arXiv:2402.08210 [quant-ph]
  5. Hong, Z.; Wang, J.; Qu, X.; Zhu, X.; Liu, J.; Xiao, J. Quantum Convolutional Neural Network on Protein Distance Prediction. 2021 International Joint Conference on Neural Networks (IJCNN). 2021; pp 1–8, ISSN: 2161-4407
  6. Villalobos, P.; Sevilla, J.; Besiroglu, T.; Heim, L.; Ho, A.; Hobbhahn, M. Machine Learning Model Sizes and the Parameter Gap. 2022; http://arxiv.org/abs/2207.02852, arXiv:2207.02852 [cs]
  7. Williams, V. V.; Xu, Y.; Xu, Z.; Zhou, R. New Bounds for Matrix Multiplication: from Alpha to Omega. 2023; http://arxiv.org/abs/2307.07970, arXiv:2307.07970 [cs]
  8. Shao, C. A Quantum Model for Multilayer Perceptron. 2018; http://arxiv.org/abs/1808.10561, arXiv:1808.10561 [quant-ph]
  9. Stein, S. A.; Mao, Y.; Ang, J.; Li, A. QuCNN : A Quantum Convolutional Neural Network with Entanglement Based Backpropagation. 2022; http://arxiv.org/abs/2210.05443, arXiv:2210.05443 [quant-ph]
  10. Shao, C. Quantum Algorithms to Matrix Multiplication. 2018; http://arxiv.org/abs/1803.01601, arXiv:1803.01601 [quant-ph]
  11. Schuman, D.; Sünkel, L.; Altmann, P.; Stein, J.; Roch, C.; Gabor, T.; Linnhoff-Popien, C. Towards Transfer Learning for Large-Scale Image Classification Using Annealing-based Quantum Boltzmann Machines. 2023; http://arxiv.org/abs/2311.15966, arXiv:2311.15966 [quant-ph]
  12. National Institute of Health Tox21 Data Challenge 2014. https://tripod.nih.gov/tox21/challenge/data.jsp
  13. CUDA Toolkit - Free Tools and Training. https://developer.nvidia.com/cuda-toolkit
  14. Kingma, D. P.; Ba, J. Adam: A Method for Stochastic Optimization. 2017; http://arxiv.org/abs/1412.6980, arXiv:1412.6980 [cs]
  15. Mottonen, M.; Vartiainen, J. J.; Bergholm, V.; Salomaa, M. M. Transformation of quantum states using uniformly controlled rotations. 2004; http://arxiv.org/abs/quant-ph/0407010, arXiv:quant-ph/0407010
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: