Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Anyon braiding and telegraph noise in a graphene interferometer (2403.18983v2)

Published 27 Mar 2024 in cond-mat.mes-hall and cond-mat.str-el

Abstract: The search for anyons, quasiparticles with fractional charge and exotic exchange statistics, has inspired decades of condensed matter research. Quantum Hall interferometers enable direct observation of the anyon braiding phase via discrete interference phase jumps when the quasiparticle number changes. Here, we observe the universal anyonic braiding phase in both the $\nu = 1/3$ and $4/3$ fractional quantum Hall states by probing three-state random telegraph noise (RTN) in real-time. We find that the observed RTN stems from anyon quasiparticle number $n$ fluctuations and reconstruct three Aharonov-Bohm oscillation signals phase shifted by $2\pi/3$, corresponding to the three possible interference branches from braiding around $n$ (mod 3) anyons. Hence, we fully characterize the anyon exchange statistics using new methods that can readily extend to non-abelian states.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. R. B. Laughlin, Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations, Physical Review Letters 50, 1395 (1983).
  2. B. I. Halperin, Statistics of Quasiparticles and the Hierarchy of Fractional Quantized Hall States, Physical Review Letters 52, 1583 (1984).
  3. D. Arovas, J. R. Schrieffer, and F. Wilczek, Fractional Statistics and the Quantum Hall Effect, Physical Review Letters 53, 722 (1984).
  4. A. Stern, Anyons and the quantum Hall effect—A pedagogical review, Annals of Physics 323, 204 (2008).
  5. D. E. Feldman and B. I. Halperin, Fractional charge and fractional statistics in the quantum Hall effects, Reports on Progress in Physics 84, 076501 (2021).
  6. A. Kitaev, Anyons in an exactly solved model and beyond, Annals of Physics January Special Issue, 321, 2 (2006).
  7. A. Stern and N. H. Lindner, Topological Quantum Computation—From Basic Concepts to First Experiments, Science 339, 1179 (2013).
  8. S. D. Sarma, M. Freedman, and C. Nayak, Majorana zero modes and topological quantum computation, npj Quantum Information 1, 1 (2015).
  9. C. L. Kane, Telegraph Noise and Fractional Statistics in the Quantum Hall Effect, Physical Review Letters 90, 226802 (2003).
  10. E. Grosfeld, S. H. Simon, and A. Stern, Switching Noise as a Probe of Statistics in the Fractional Quantum Hall Effect, Physical Review Letters 96, 226803 (2006).
  11. B. Rosenow and S. H. Simon, Telegraph noise and the Fabry-Perot quantum Hall interferometer, Physical Review B 85, 201302 (2012).
  12. D. E. Feldman and B. I. Halperin, Robustness of quantum Hall interferometry, Physical Review B 105, 165310 (2022).
  13. C. W. von Keyserlingk, S. H. Simon, and B. Rosenow, Enhanced Bulk-Edge Coulomb Coupling in Fractional Fabry-Perot Interferometers, Physical Review Letters 115, 126807 (2015).
  14. B. Rosenow and A. Stern, Flux Superperiods and Periodicity Transitions in Quantum Hall Interferometers, Physical Review Letters 124, 106805 (2020).
  15. M. B. Weissman, 1/f noise and other slow, nonexponential kinetics in condensed matter, Reviews of Modern Physics 60, 537 (1988).
  16. Sh. Kogan, 1/f noise and random telegraph noise, in Electronic Noise and Fluctuations in Solids (Cambridge University Press, Cambridge, 1996) pp. 203–286.
  17. A. L. Efros and B. I. Shklovskii, Coulomb gap and low temperature conductivity of disordered systems, Journal of Physics C: Solid State Physics 8, L49 (1975).
  18. S. Das Sarma, M. Freedman, and C. Nayak, Topologically Protected Qubits from a Possible Non-Abelian Fractional Quantum Hall State, Physical Review Letters 94, 166802 (2005).
  19. A. Stern and B. I. Halperin, Proposed Experiments to Probe the Non-Abelian ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2 Quantum Hall State, Physical Review Letters 96, 016802 (2006).
  20. P. Bonderson, A. Kitaev, and K. Shtengel, Detecting Non-Abelian Statistics in the ν𝜈\nuitalic_ν = 5 / 2 Fractional Quantum Hall State, Physical Review Letters 96, 016803 (2006).
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube