Papers
Topics
Authors
Recent
2000 character limit reached

Feynman Diagrams as Computational Graphs (2403.18840v1)

Published 28 Feb 2024 in hep-th, cond-mat.str-el, cs.LG, hep-ph, and physics.comp-ph

Abstract: We propose a computational graph representation of high-order Feynman diagrams in Quantum Field Theory (QFT), applicable to any combination of spatial, temporal, momentum, and frequency domains. Utilizing the Dyson-Schwinger and parquet equations, our approach effectively organizes these diagrams into a fractal structure of tensor operations, significantly reducing computational redundancy. This approach not only streamlines the evaluation of complex diagrams but also facilitates an efficient implementation of the field-theoretic renormalization scheme, crucial for enhancing perturbative QFT calculations. Key to this advancement is the integration of Taylor-mode automatic differentiation, a key technique employed in machine learning packages to compute higher-order derivatives efficiently on computational graphs. To operationalize these concepts, we develop a Feynman diagram compiler that optimizes diagrams for various computational platforms, utilizing machine learning frameworks. Demonstrating this methodology's effectiveness, we apply it to the three-dimensional uniform electron gas problem, achieving unprecedented accuracy in calculating the quasiparticle effective mass at metal density. Our work demonstrates the synergy between QFT and machine learning, establishing a new avenue for applying AI techniques to complex quantum many-body problems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (60)
  1. N. N. Bogoliubow and O. S. Parasiuk, On the multiplication of the causal function in the quantum theory of fields, Acta Mathematica 97, 227 (1957).
  2. K. Hepp, Proof of the bogoliubov-parasiuk theorem on renormalization, Communications in Mathematical Physics 2, 301 (1966).
  3. W. Zimmermann, The power counting theorem for minkowski metric, Communications in Mathematical Physics 11, 1 (1968).
  4. W. Zlmmbrmann, Convergence of bogoliubov’s method of renormalization in momentum space, in Quantum Field Theory (Springer, 2000) pp. 217–243.
  5. L. Hedin, New method for calculating the one-particle green’s function with application to the electron-gas problem, Phys. Rev. 139, A796 (1965).
  6. G. Eliashberg, Interactions between electrons and lattice vibrations in a superconductor, Sov. Phys. JETP 11, 696 (1960).
  7. G. Eliashberg, Temperature green’s function for electrons in a superconductor, Sov. Phys. JETP 12, 1000 (1961).
  8. N. V. Prokof’ev and B. V. Svistunov, Polaron problem by diagrammatic quantum monte carlo, Phys. Rev. Lett. 81, 2514 (1998).
  9. N. Prokof’ev and B. Svistunov, Fermi-polaron problem: Diagrammatic monte carlo method for divergent sign-alternating series, Phys. Rev. B 77, 020408(R) (2008).
  10. R. Rossi, Determinant diagrammatic monte carlo algorithm in the thermodynamic limit, Phys. Rev. Lett. 119, 045701 (2017).
  11. N. Prokof’ev and B. Svistunov, Bold diagrammatic monte carlo technique: When the sign problem is welcome, Phys. Rev. Lett. 99, 250201 (2007).
  12. K. Chen and K. Haule, A combined variational and diagrammatic quantum monte carlo approach to the many-electron problem, Nature communications 10, 1 (2019).
  13. I. V. Oseledets, Tensor-Train Decomposition, SIAM Journal on Scientific Computing 33, 2295 (2011).
  14. S. Dolgov and D. Savostyanov, Parallel cross interpolation for high-precision calculation of high-dimensional integrals, Computer Physics Communications 246, 106869 (2020).
  15. A. Moutenet, W. Wu, and M. Ferrero, Determinant monte carlo algorithms for dynamical quantities in fermionic systems, Phys. Rev. B 97, 085117 (2018).
  16. F. Šimkovic and E. Kozik, Determinant monte carlo for irreducible feynman diagrams in the strongly correlated regime, Phys. Rev. B 100, 121102(R) (2019).
  17. R. Rossi, F. Šimkovic, and M. Ferrero, Renormalized perturbation theory at large expansion orders, Europhysics Letters 132, 11001 (2020).
  18. A. Taheridehkordi, S. H. Curnoe, and J. P. F. LeBlanc, Algorithmic Matsubara integration for Hubbard-like models, Phys. Rev. B 99, 035120 (2019).
  19. J. Bettencourt, M. J. Johnson, and D. Duvenaud, Taylor-mode automatic differentiation for higher-order derivatives in JAX, in Program Transformations for ML Workshop at NeurIPS 2019 (2019).
  20. A. Griewank and A. Walther, Evaluating derivatives: principles and techniques of algorithmic differentiation (SIAM, 2008).
  21. S. Tan, Higher-Order Automatic Differentiation and Its Applications, Ph.D. thesis, Massachusetts Institute of Technology (2023).
  22. C. A. Kukkonen and K. Chen, Quantitative electron-electron interaction using local field factors from quantum monte carlo calculations, Phys. Rev. B 104, 195142 (2021).
  23. K. Haule and K. Chen, Single-particle excitations in the uniform electron gas by diagrammatic monte carlo, Scientific Reports 12, 2294 (2022).
  24. F. Šimkovic, Y. Deng, and E. Kozik, Superfluid ground state phase diagram of the two-dimensional hubbard model in the emergent bardeen-cooper-schrieffer regime, Phys. Rev. B 104, L020507 (2021).
  25. A. J. Kim, F. Šimkovic, and E. Kozik, Spin and charge correlations across the metal-to-insulator crossover in the half-filled 2d hubbard model, Phys. Rev. Lett. 124, 117602 (2020).
  26. J. Carlström, Strong-coupling diagrammatic monte carlo technique for correlated fermions and frustrated spins, Phys. Rev. B 103, 195147 (2021).
  27. R. W. Godby, M. Schlüter, and L. J. Sham, Self-energy operators and exchange-correlation potentials in semiconductors, Phys. Rev. B 37, 10159 (1988).
  28. M. S. Hybertsen and S. G. Louie, Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies, Phys. Rev. B 34, 5390 (1986).
  29. A. L. Kutepov and G. Kotliar, One-electron spectra and susceptibilities of the three-dimensional electron gas from self-consistent solutions of hedin’s equations, Phys. Rev. B 96, 035108 (2017).
  30. C. Wellenhofer, C. Drischler, and A. Schwenk, Dilute fermi gas at fourth order in effective field theory, Physics Letters B 802, 135247 (2020).
  31. J. Cocke, Global common subexpression elimination, ACM SIGPLAN Notices 5, 20 (1970).
  32. F. B. Kugler and J. von Delft, Derivation of exact flow equations from the self-consistent parquet relations, New Journal of Physics 20, 123029 (2018).
  33. F. J. Dyson, The s𝑠sitalic_s matrix in quantum electrodynamics, Phys. Rev. 75, 1736 (1949).
  34. K. G. Wilson and J. Kogut, The renormalization group and the ϵitalic-ϵ\epsilonitalic_ϵ expansion, Physics Reports 12, 75 (1974).
  35. K. G. Wilson, The renormalization group: Critical phenomena and the kondo problem, Rev. Mod. Phys. 47, 773 (1975).
  36. H. A. Bethe, The electromagnetic shift of energy levels, Phys. Rev. 72, 339 (1947).
  37. J. Schwinger, On quantum-electrodynamics and the magnetic moment of the electron, Phys. Rev. 73, 416 (1948).
  38. R. P. Feynman, Relativistic cut-off for quantum electrodynamics, Phys. Rev. 74, 1430 (1948).
  39. D. Hanneke, S. Fogwell Hoogerheide, and G. Gabrielse, Cavity control of a single-electron quantum cyclotron: Measuring the electron magnetic moment, Phys. Rev. A 83, 052122 (2011).
  40. K. Chen, Systematic field-theoretic renormalization of non-local interactions (2023), manuscript in preparation.
  41. M. C. Engel, J. A. Smith, and M. P. Brenner, Optimal Control of Nonequilibrium Systems through Automatic Differentiation, Phys. Rev. X 13, 041032 (2023).
  42. Huawei mindspore ai development framework, in Artificial Intelligence Technology (Springer Nature Singapore, Singapore, 2023) pp. 137–162.
  43. https://github.com/numericalEFT/FeynmanDiagram.jl (2024), this is a link to the code of the Feynman diagram compiler in this paper.
  44. R. Tuovinen, F. Covito, and M. A. Sentef, Efficient computation of the second-Born self-energy using tensor-contraction operations, The Journal of Chemical Physics 151, 174110 (2019).
  45. V. Silin, Theory of a degenerate electron liquid, Sov. Phys. JETP-USSR 6, 387 (1958a).
  46. V. Silin, On the theory of the anomalous skin effect in metals, Sov. Phys. JETP 6 (1958b).
  47. P. Nozières and J. M. Luttinger, Derivation of the landau theory of fermi liquids. i. formal preliminaries, Phys. Rev. 127, 1423 (1962).
  48. J. M. Luttinger and P. Nozières, Derivation of the landau theory of fermi liquids. ii. equilibrium properties and transport equation, Phys. Rev. 127, 1431 (1962).
  49. H. Yasuhara and Y. Ousaka, Effective mass, landau interaction function and self-energy of an electron liquid, International Journal of Modern Physics B 06, 3089 (1992).
  50. D. M. Ceperley and B. J. Alder, Ground State of the Electron Gas by a Stochastic Method, Phys. Rev. Lett. 45, 566 (1980).
  51. D. Ceperley, G. V. Chester, and M. H. Kalos, Monte carlo simulation of a many-fermion study, Phys. Rev. B 16, 3081 (1977).
  52. S. Azadi, N. D. Drummond, and W. M. C. Foulkes, Quasiparticle effective mass of the three-dimensional fermi liquid by quantum monte carlo, Phys. Rev. Lett. 127, 086401 (2021).
  53. G. P. Lepage, A new algorithm for adaptive multidimensional integration, Journal of Computational Physics 27, 192 (1978).
  54. G. P. Lepage, Adaptive multidimensional integration: vegas enhanced, Journal of Computational Physics 439, 110386 (2021).
  55. K. Burke, Perspective on density functional theory, The Journal of Chemical Physics 136, 150901 (2012).
  56. N. Mardirossian and M. Head-Gordon, Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals, Molecular Physics 115, 2315 (2017).
  57. P. Verma and D. G. Truhlar, Status and challenges of density functional theory, Trends in Chemistry 2, 302 (2020), special Issue - Laying Groundwork for the Future.
  58. E. R. Margine and F. Giustino, Anisotropic Migdal-Eliashberg theory using Wannier functions, Phys. Rev. B 87, 024505 (2013).
  59. C. Gao, J. Isaacson, and C. Krause, i- flow : High-dimensional integration and sampling with normalizing flows, Machine Learning: Science and Technology 1, 045023 (2020a).
  60. J. Brady, P. Wen, and J. W. Holt, Normalizing flows for microscopic many-body calculations: An application to the nuclear equation of state, Phys. Rev. Lett. 127, 062701 (2021).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 2 likes about this paper.