Feynman Diagrams as Computational Graphs (2403.18840v1)
Abstract: We propose a computational graph representation of high-order Feynman diagrams in Quantum Field Theory (QFT), applicable to any combination of spatial, temporal, momentum, and frequency domains. Utilizing the Dyson-Schwinger and parquet equations, our approach effectively organizes these diagrams into a fractal structure of tensor operations, significantly reducing computational redundancy. This approach not only streamlines the evaluation of complex diagrams but also facilitates an efficient implementation of the field-theoretic renormalization scheme, crucial for enhancing perturbative QFT calculations. Key to this advancement is the integration of Taylor-mode automatic differentiation, a key technique employed in machine learning packages to compute higher-order derivatives efficiently on computational graphs. To operationalize these concepts, we develop a Feynman diagram compiler that optimizes diagrams for various computational platforms, utilizing machine learning frameworks. Demonstrating this methodology's effectiveness, we apply it to the three-dimensional uniform electron gas problem, achieving unprecedented accuracy in calculating the quasiparticle effective mass at metal density. Our work demonstrates the synergy between QFT and machine learning, establishing a new avenue for applying AI techniques to complex quantum many-body problems.
- N. N. Bogoliubow and O. S. Parasiuk, On the multiplication of the causal function in the quantum theory of fields, Acta Mathematica 97, 227 (1957).
- K. Hepp, Proof of the bogoliubov-parasiuk theorem on renormalization, Communications in Mathematical Physics 2, 301 (1966).
- W. Zimmermann, The power counting theorem for minkowski metric, Communications in Mathematical Physics 11, 1 (1968).
- W. Zlmmbrmann, Convergence of bogoliubov’s method of renormalization in momentum space, in Quantum Field Theory (Springer, 2000) pp. 217–243.
- L. Hedin, New method for calculating the one-particle green’s function with application to the electron-gas problem, Phys. Rev. 139, A796 (1965).
- G. Eliashberg, Interactions between electrons and lattice vibrations in a superconductor, Sov. Phys. JETP 11, 696 (1960).
- G. Eliashberg, Temperature green’s function for electrons in a superconductor, Sov. Phys. JETP 12, 1000 (1961).
- N. V. Prokof’ev and B. V. Svistunov, Polaron problem by diagrammatic quantum monte carlo, Phys. Rev. Lett. 81, 2514 (1998).
- N. Prokof’ev and B. Svistunov, Fermi-polaron problem: Diagrammatic monte carlo method for divergent sign-alternating series, Phys. Rev. B 77, 020408(R) (2008).
- R. Rossi, Determinant diagrammatic monte carlo algorithm in the thermodynamic limit, Phys. Rev. Lett. 119, 045701 (2017).
- N. Prokof’ev and B. Svistunov, Bold diagrammatic monte carlo technique: When the sign problem is welcome, Phys. Rev. Lett. 99, 250201 (2007).
- K. Chen and K. Haule, A combined variational and diagrammatic quantum monte carlo approach to the many-electron problem, Nature communications 10, 1 (2019).
- I. V. Oseledets, Tensor-Train Decomposition, SIAM Journal on Scientific Computing 33, 2295 (2011).
- S. Dolgov and D. Savostyanov, Parallel cross interpolation for high-precision calculation of high-dimensional integrals, Computer Physics Communications 246, 106869 (2020).
- A. Moutenet, W. Wu, and M. Ferrero, Determinant monte carlo algorithms for dynamical quantities in fermionic systems, Phys. Rev. B 97, 085117 (2018).
- F. Šimkovic and E. Kozik, Determinant monte carlo for irreducible feynman diagrams in the strongly correlated regime, Phys. Rev. B 100, 121102(R) (2019).
- R. Rossi, F. Šimkovic, and M. Ferrero, Renormalized perturbation theory at large expansion orders, Europhysics Letters 132, 11001 (2020).
- A. Taheridehkordi, S. H. Curnoe, and J. P. F. LeBlanc, Algorithmic Matsubara integration for Hubbard-like models, Phys. Rev. B 99, 035120 (2019).
- J. Bettencourt, M. J. Johnson, and D. Duvenaud, Taylor-mode automatic differentiation for higher-order derivatives in JAX, in Program Transformations for ML Workshop at NeurIPS 2019 (2019).
- A. Griewank and A. Walther, Evaluating derivatives: principles and techniques of algorithmic differentiation (SIAM, 2008).
- S. Tan, Higher-Order Automatic Differentiation and Its Applications, Ph.D. thesis, Massachusetts Institute of Technology (2023).
- C. A. Kukkonen and K. Chen, Quantitative electron-electron interaction using local field factors from quantum monte carlo calculations, Phys. Rev. B 104, 195142 (2021).
- K. Haule and K. Chen, Single-particle excitations in the uniform electron gas by diagrammatic monte carlo, Scientific Reports 12, 2294 (2022).
- F. Šimkovic, Y. Deng, and E. Kozik, Superfluid ground state phase diagram of the two-dimensional hubbard model in the emergent bardeen-cooper-schrieffer regime, Phys. Rev. B 104, L020507 (2021).
- A. J. Kim, F. Šimkovic, and E. Kozik, Spin and charge correlations across the metal-to-insulator crossover in the half-filled 2d hubbard model, Phys. Rev. Lett. 124, 117602 (2020).
- J. Carlström, Strong-coupling diagrammatic monte carlo technique for correlated fermions and frustrated spins, Phys. Rev. B 103, 195147 (2021).
- R. W. Godby, M. Schlüter, and L. J. Sham, Self-energy operators and exchange-correlation potentials in semiconductors, Phys. Rev. B 37, 10159 (1988).
- M. S. Hybertsen and S. G. Louie, Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies, Phys. Rev. B 34, 5390 (1986).
- A. L. Kutepov and G. Kotliar, One-electron spectra and susceptibilities of the three-dimensional electron gas from self-consistent solutions of hedin’s equations, Phys. Rev. B 96, 035108 (2017).
- C. Wellenhofer, C. Drischler, and A. Schwenk, Dilute fermi gas at fourth order in effective field theory, Physics Letters B 802, 135247 (2020).
- J. Cocke, Global common subexpression elimination, ACM SIGPLAN Notices 5, 20 (1970).
- F. B. Kugler and J. von Delft, Derivation of exact flow equations from the self-consistent parquet relations, New Journal of Physics 20, 123029 (2018).
- F. J. Dyson, The s𝑠sitalic_s matrix in quantum electrodynamics, Phys. Rev. 75, 1736 (1949).
- K. G. Wilson and J. Kogut, The renormalization group and the ϵitalic-ϵ\epsilonitalic_ϵ expansion, Physics Reports 12, 75 (1974).
- K. G. Wilson, The renormalization group: Critical phenomena and the kondo problem, Rev. Mod. Phys. 47, 773 (1975).
- H. A. Bethe, The electromagnetic shift of energy levels, Phys. Rev. 72, 339 (1947).
- J. Schwinger, On quantum-electrodynamics and the magnetic moment of the electron, Phys. Rev. 73, 416 (1948).
- R. P. Feynman, Relativistic cut-off for quantum electrodynamics, Phys. Rev. 74, 1430 (1948).
- D. Hanneke, S. Fogwell Hoogerheide, and G. Gabrielse, Cavity control of a single-electron quantum cyclotron: Measuring the electron magnetic moment, Phys. Rev. A 83, 052122 (2011).
- K. Chen, Systematic field-theoretic renormalization of non-local interactions (2023), manuscript in preparation.
- M. C. Engel, J. A. Smith, and M. P. Brenner, Optimal Control of Nonequilibrium Systems through Automatic Differentiation, Phys. Rev. X 13, 041032 (2023).
- Huawei mindspore ai development framework, in Artificial Intelligence Technology (Springer Nature Singapore, Singapore, 2023) pp. 137–162.
- https://github.com/numericalEFT/FeynmanDiagram.jl (2024), this is a link to the code of the Feynman diagram compiler in this paper.
- R. Tuovinen, F. Covito, and M. A. Sentef, Efficient computation of the second-Born self-energy using tensor-contraction operations, The Journal of Chemical Physics 151, 174110 (2019).
- V. Silin, Theory of a degenerate electron liquid, Sov. Phys. JETP-USSR 6, 387 (1958a).
- V. Silin, On the theory of the anomalous skin effect in metals, Sov. Phys. JETP 6 (1958b).
- P. Nozières and J. M. Luttinger, Derivation of the landau theory of fermi liquids. i. formal preliminaries, Phys. Rev. 127, 1423 (1962).
- J. M. Luttinger and P. Nozières, Derivation of the landau theory of fermi liquids. ii. equilibrium properties and transport equation, Phys. Rev. 127, 1431 (1962).
- H. Yasuhara and Y. Ousaka, Effective mass, landau interaction function and self-energy of an electron liquid, International Journal of Modern Physics B 06, 3089 (1992).
- D. M. Ceperley and B. J. Alder, Ground State of the Electron Gas by a Stochastic Method, Phys. Rev. Lett. 45, 566 (1980).
- D. Ceperley, G. V. Chester, and M. H. Kalos, Monte carlo simulation of a many-fermion study, Phys. Rev. B 16, 3081 (1977).
- S. Azadi, N. D. Drummond, and W. M. C. Foulkes, Quasiparticle effective mass of the three-dimensional fermi liquid by quantum monte carlo, Phys. Rev. Lett. 127, 086401 (2021).
- G. P. Lepage, A new algorithm for adaptive multidimensional integration, Journal of Computational Physics 27, 192 (1978).
- G. P. Lepage, Adaptive multidimensional integration: vegas enhanced, Journal of Computational Physics 439, 110386 (2021).
- K. Burke, Perspective on density functional theory, The Journal of Chemical Physics 136, 150901 (2012).
- N. Mardirossian and M. Head-Gordon, Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals, Molecular Physics 115, 2315 (2017).
- P. Verma and D. G. Truhlar, Status and challenges of density functional theory, Trends in Chemistry 2, 302 (2020), special Issue - Laying Groundwork for the Future.
- E. R. Margine and F. Giustino, Anisotropic Migdal-Eliashberg theory using Wannier functions, Phys. Rev. B 87, 024505 (2013).
- C. Gao, J. Isaacson, and C. Krause, i- flow : High-dimensional integration and sampling with normalizing flows, Machine Learning: Science and Technology 1, 045023 (2020a).
- J. Brady, P. Wen, and J. W. Holt, Normalizing flows for microscopic many-body calculations: An application to the nuclear equation of state, Phys. Rev. Lett. 127, 062701 (2021).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.