Thin accretion disk and shadow of Kerr-Sen black hole in Einstein-Maxwell-dilaton-axion gravity
Abstract: We investigate the thin disk and shadow of Kerr-Sen black hole in Einstein-Maxwell-dilaton-axion gravity. The results reveal that as the dilaton parameter $r_2$ increase, the energy flux, the radiation temperature, the spectra luminosity, and the radiative efficiency of the disk all increase. By narrowing down the dilaton parameter range to $0\leqslant \frac{r_2}{M}\leqslant0.4$, we discover that in the high-frequency region, the Kerr-Sen black hole demonstrates higher energy output compared to the Kerr black hole. We also investigated the shadow of Kerr-Sen black hole in a uniform plasma environment. For fixed inclination angle, dilaton, and spin parameters, the shadow increases as the homogeneous plasma parameter $k$ increases. Conversely, when $k $ and $a$ are fixed, an increase in $r_2$ leads to a decrease in the shadow. Finally, we constrain the model parameters with observational data from M87* and Sgr A*.
- B. P. Abbott et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett., 116(6):061102, 2016.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett., 875:L1, 2019.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophys. J. Lett., 875(1):L4, 2019.
- Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett., 930(2):L12, 2022.
- Accreting Black Holes. 10 2018.
- Accretion Power in Astrophysics. 01 2002.
- Hot Accretion Flows Around Black Holes. Ann. Rev. Astron. Astrophys., 52:529–588, 2014.
- Black holes in binary systems. Observational appearance. Astron. Astrophys., 24:337–355, 1973.
- Astrophysics of black holes. In Black Holes (Les Astres Occlus), pages 343–450, January 1973.
- Disk-Accretion onto a Black Hole. Time-Averaged Structure of Accretion Disk. Astrophys. J., 191:499–506, 1974.
- Kip S. Thorne. Disk accretion onto a black hole. 2. Evolution of the hole. Astrophys. J., 191:507–520, 1974.
- Observational imprints of gravastars from accretion disks and hot-spots. 1 2024.
- Imaging compact boson stars with hot spots and thin accretion disks. Phys. Rev. D, 108(4):044021, 2023.
- Thin accretion disks around a black hole in Einstein-Aether-scalar theory. Eur. Phys. J. C, 82(11):1067, 2022.
- Thin accretion disc luminosity and its image around rotating black holes in perfect fluid dark matter. Mon. Not. Roy. Astron. Soc., 521(1):708–716, 2023.
- Accretion disc around black hole in Einstein-SU(N) non-linear sigma model. Eur. Phys. J. C, 83(5):422, 2023.
- Thin accretion disk around a rotating Kerr-like black hole in Einstein-bumblebee gravity model. 10 2019.
- Accretion disks around the Gibbons–Maeda–Garfinkle–Horowitz–Strominger charged black holes. Eur. Phys. J. C, 78(9):788, 2018.
- Distinguishing Brans–Dicke–Kerr type naked singularities and black holes with their thin disk electromagnetic radiation properties. Eur. Phys. J. C, 80(2):162, 2020.
- Thin accretion disks and charged rotating dilaton black holes. Eur. Phys. J. C, 80(4):351, 2020.
- Observable Properties of Orbits in Exact Bumpy Spacetimes. Phys. Rev. D, 77:024035, 2008.
- Constraining the quadrupole moment of stellar-mass black-hole candidates with the continuum fitting method. Astrophys. J., 731:121, 2011.
- Temperature profiles of accretion discs around rapidly rotating strange stars in general relativity: a comparison with neutron stars. Astron. Astrophys., 372:925, 2001.
- Thin accretion disks around neutron and quark stars. Astron. Astrophys., 500:621–631, 2009.
- F. Siddhartha Guzman. Accretion disc onto boson stars: A Way to supplant black holes candidates. Phys. Rev. D, 73:021501, 2006.
- Marek Rogatko. Positivity of energy in Einstein-Maxwell axion dilaton gravity. Class. Quant. Grav., 19:5063–5072, 2002.
- Ashoke Sen. Rotating charged black hole solution in heterotic string theory. Phys. Rev. Lett., 69:1006–1009, 1992.
- Choked accretion onto Kerr-Sen black holes in Einstein-Maxwell-dilaton-axion gravity. Phys. Rev. D, 109(6):063014, 2024.
- Axion-dilaton cosmology and dark energy. JCAP, 03:012, 2008.
- Recurrent acceleration in dilaton-axion cosmology. Phys. Rev. D, 74:103508, 2006.
- Implications of Einstein–Maxwell dilaton–axion gravity from the black hole continuum spectrum. Mon. Not. Roy. Astron. Soc., 500(1):481–492, 2020.
- Imprints of Einstein-Maxwell dilaton-axion gravity in the observed shadows of Sgr A* and M87*. 5 2023.
- Constraining an Einstein-Maxwell-dilaton-axion black hole at the Galactic Center with the orbit of the S2 star. JCAP, 08:039, 2023.
- Physical properties of four-dimensional superstring gravity black hole solutions. Nucl. Phys. B, 399:137–168, 1993.
- Charged black holes in string theory. Phys. Rev. D, 43:3140, 1991. [Erratum: Phys.Rev.D 45, 3888 (1992)].
- Z. Kovacs and T. Harko. Can accretion disk properties observationally distinguish black holes from naked singularities? Phys. Rev. D, 82:124047, 2010.
- Astrophysics and black holes. In Les Houches Summer School of Theoretical Physics: Black Holes, pages 343–550, 1973.
- Circular Orbit Structure and Thin Accretion Disks around Kerr Black Holes with Scalar Hair. Astrophys. J., 910(1):52, 2021.
- Diego F. Torres. Accretion disc onto a static nonbaryonic compact object. Nucl. Phys. B, 626:377–394, 2002.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.